【贪心算法】一文让你学会“贪心”(贪心算法详解及经典案例)

简介: 贪心算法是一种非常常见的算法,它的简单和高效性使其在实际应用中被广泛使用。贪心算法的核心思想是在每一步都采取当前状态下最优的选择,而不考虑未来可能产生的影响。虽然贪心算法不能保证总是得到最优解,但在很多情况下,它可以获得很好的结果。本篇文章将介绍贪心算法的基本概念和一些经典应用,以及如何通过贪心算法来解决一些实际问题。希望通过本文的阅读,读者可以对贪心算法有更加深刻的理解,并能够在实际问题中应用贪心算法来得到更好的解决方案。让我们暴打贪心算法吧!

@[toc]
在这里插入图片描述

🐱‍🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。

前言

贪心算法是一种非常常见的算法,它的简单和高效性使其在实际应用中被广泛使用。

贪心算法的核心思想是在每一步都采取当前状态下最优的选择,而不考虑未来可能产生的影响。虽然贪心算法不能保证总是得到最优解,但在很多情况下,它可以获得很好的结果。

本篇文章将介绍贪心算法的基本概念和一些经典应用,以及如何通过贪心算法来解决一些实际问题。希望通过本文的阅读,读者可以对贪心算法有更加深刻的理解,并能够在实际问题中应用贪心算法来得到更好的解决方案。
让我们暴打贪心算法吧!
在这里插入图片描述

如何理解“贪心算法”?

关于贪心算法,我们先看一个例子。

假设我们有一个可以容纳100kg物品的背包,可以装各种物品。我们有以下5种豆子,每种豆子的总量和总价值都各不相同。为了让背包中所装物品的总价值最大,我们如何选择在背包中装哪些豆子?每种豆子又该装多少呢?

在这里插入图片描述

实际上,这个问题很简单,我估计你一下子就能想出来,没错,我们只要先算一算每个物品的单价,按照单价由高到低依次来装就好了。单价从高到低排列,依次是:黑豆、绿豆、红豆、青豆、黄豆,所以,我们可以往背包里装20kg黑豆、30kg绿豆、50kg红豆。

这个问题的解决思路显而易见,它本质上借助的就是贪心算法。结合这个例子,我总结一下贪心算法解决问题的步骤,我们一起来看看。

第一步,当我们看到这类问题的时候,首先要联想到贪心算法:针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。

类比到刚刚的例子,限制值就是重量不能超过100kg,期望值就是物品的总价值。这组数据就是5种豆子。我们从中选出一部分,满足重量不超过100kg,并且总价值最大。

第二步,我们尝试看下这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。

类比到刚刚的例子,我们每次都从剩下的豆子里面,选择单价最高的,也就是重量相同的情况下,对价值贡献最大的豆子。

第三步,我们举几个例子看下贪心算法产生的结果是否是最优的。大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。

实际上,用贪心算法解决问题的思路,并不总能给出最优解。

我来举一个例子。在一个有权图中,我们从顶点S开始,找一条到顶点T的最短路径(路径中边的权值和最小)。贪心算法的解决思路是,每次都选择一条跟当前顶点相连的权最小的边,直到找到顶点T。按照这种思路,我们求出的最短路径是S->A->E->T,路径长度是1+4+4=9。

在这里插入图片描述

但是,这种贪心的选择方式,最终求的路径并不是最短路径,因为路径S->B->D->T才是最短路径,因为这条路径的长度是2+2+2=6。为什么贪心算法在这个问题上不工作了呢?

在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。如果我们第一步从顶点S走到顶点A,那接下来面对的顶点和边,跟第一步从顶点S走到顶点B,是完全不同的。所以,即便我们第一步选择最优的走法(边最短),但有可能因为这一步选择,导致后面每一步的选择都很糟糕,最终也就无缘全局最优解了。

贪心算法实战分析

对于贪心算法,你是不是还有点懵?如果死抠理论的话,确实很难理解透彻。掌握贪心算法的关键是多练习。只要多练习几道题,自然就有感觉了。所以,我带着你分析几个具体的例子,帮助你深入理解贪心算法。

1.分糖果

我们有m个糖果和n个孩子。我们现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。

每个糖果的大小不等,这m个糖果的大小分别是s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这n个孩子对糖果大小的需求分别是g1,g2,g3,……,gn。

我的问题是,如何分配糖果,能尽可能满足最多数量的孩子?

我们可以把这个问题抽象成,从n个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数m。

我们现在来看看如何用贪心算法来解决。对于一个孩子来说,如果小的糖果可以满足,我们就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,我们可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对我们期望值的贡献是一样的。

我们每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。

2.钱币找零

这个问题在我们的日常生活中更加普遍。假设我们有1元、2元、5元、10元、20元、50元、100元这些面额的纸币,它们的张数分别是c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付K元,最少要用多少张纸币呢?

在生活中,我们肯定是先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用1元来补齐。

在贡献相同期望值(纸币数目)的情况下,我们希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。直觉告诉我们,这种处理方法就是最好的。实际上,要严谨地证明这种贪心算法的正确性,需要比较复杂的、有技巧的数学推导,我不建议你花太多时间在上面,不过如果感兴趣的话,可以自己去研究下。

3.区间覆盖

假设我们有n个区间,区间的起始端点和结束端点分别是[l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。我们从这n个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?

在这里插入图片描述

这个问题的处理思路稍微不是那么好懂,不过,我建议你最好能弄懂,因为这个处理思想在很多贪心算法问题中都有用到,比如任务调度、教师排课等等问题。

这个问题的解决思路是这样的:我们假设这n个区间中最左端点是lmin,最右端点是rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将[lmin, rmax]覆盖上。我们按照起始端点从小到大的顺序对这n个区间排序。

我们每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。

在这里插入图片描述

内容小结

今天我们学习了贪心算法。

实际上,贪心算法适用的场景比较有限。这种算法思想更多的是指导设计基础算法。比如最小生成树算法、单源最短路径算法,这些算法都用到了贪心算法。 从我个人的学习经验来讲,不要刻意去记忆贪心算法的原理,多练习才是最有效的学习方法。

贪心算法的最难的一块是如何将要解决的问题抽象成贪心算法模型,只要这一步搞定之后,贪心算法的编码一般都很简单。贪心算法解决问题的正确性虽然很多时候都看起来是显而易见的,但是要严谨地证明算法能够得到最优解,并不是件容易的事。所以,很多时候,我们只需要多举几个例子,看一下贪心算法的解决方案是否真的能得到最优解就可以了。

最后说一句

感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。

在这里插入图片描述

相关文章
|
11天前
|
数据采集 机器学习/深度学习 算法
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
本文通过K-Means聚类算法对NBA球员数据进行聚类分析,旨在揭示球员间的相似性和差异性,为球队管理、战术决策和球员评估提供数据支持,并通过特征工程和结果可视化深入理解球员表现和潜力。
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
|
11天前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
|
2天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
8 2
|
3天前
|
机器学习/深度学习 算法 数据可视化
决策树算法介绍:原理与案例实现
决策树算法介绍:原理与案例实现
|
5天前
|
算法
【算法】贪心算法——柠檬水找零
【算法】贪心算法——柠檬水找零
|
5天前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介
|
28天前
|
算法
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
Raid5算法也被称为“异或运算”。异或是一个数学运算符,它应用于逻辑运算。异或的数学符号为“⊕”,计算机符号为“xor”。异或的运算法则为:a⊕b = (¬a ∧ b) ∨ (a ∧¬b)。如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。 异或也叫半加运算,其运算法则相当于不带进位的二进制加法。二进制下用1表示真,0表示假。异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),这些法则与加法是相同的,只是不带进位。 异或略称为XOR、EOR、EX-OR,程序中有三种演算子:XOR、xor、⊕。使用方法如下z = x ⊕ y z
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
|
1月前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
32 3
|
1月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
39 2
|
1月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
41 1

热门文章

最新文章