正文
1.栈的概念及结构
栈存储数据的方式跟数组一样,都是将元素排成一行。只不过它还有以下 3 条约束。
● 只能在末尾插入数据。
● 只能读取末尾的数据。
● 只能移除末尾的数据。
你可以将栈看成一叠碟子:你只能看到最顶端那只碟子的碟面,其他都看不到。另外,要加碟子只能往上加,不能往中间塞,要拿碟子只能从上面拿,不能从中间拿(至少你不应该这么做)。绝大部分计算机科学家都把栈的末尾称为栈顶,把栈的开头称为栈底。
尽管这些约束看上去令人很拘束,但很快你就会发现它们带来的好处。
我们先从一个空栈开始演示。
往栈里插入数据,也叫作压栈。你可以想象把一个碟子压在其他碟子上的画面。
首先,将 5 压入栈中。
接着,将 3 压入栈中。
再将 0 压入栈中。
注意,每次压栈都是把数据加到栈顶(也就是栈的末尾)。如果想把 0 插入到栈底或中间,那是不允许的,因为这就是栈的特性:只能在末尾插入数据。
从栈顶移除数据叫作出栈。这也是栈的限制:只能移除末尾的数据。
来把栈中的一些数据弹出。
首先,弹出 0。
接着,弹出 3。
这就剩下 5了。
总结:
栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
2.栈的实现
栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。
2.1栈的结构定义
typedef int STDataType; typedef struct Stack { STDataType* a; //动态开辟数组 int capacity; //记录栈的容量大小 int top; //记录栈顶的位置 }Stack;
2.2函数接口的实现
首先是在Stack.h文件中进行函数声明
Stack.h
#pragma once #include<stdio.h> #include<stdlib.h> #include<assert.h> #include<stdbool.h> typedef int STDataType; typedef struct Stack { STDataType* a; //动态开辟数组 int capacity; //记录栈的容量大小 int top; //记录栈顶的位置 }Stack; //栈的初始化 void StackInit(Stack* ps); //释放动态开辟的内存 void StackDestroy(Stack* ps); //压栈 void StackPush(Stack* ps, STDataType data); //出栈 void StackPop(Stack* ps); //读取栈顶的元素 STDataType StackTop(Stack* ps); //判断栈是否为空 bool StackEmpty(Stack* ps); //栈存储的数据个数 int StackSize(Stack* ps);
在Stack.c文件中进行函数的定义
Stack.c
#define _CRT_SECURE_NO_DEPRECATE 1 #include"Stack.h" void StackInit(Stack* ps) { assert(ps); //初始化时,可附初值,也可置空 ps->a = NULL; ps->capacity = 0; ps->top = 0; } void StackDestroy(Stack* ps) { assert(ps); //若并未对ps->a申请内存,则无需释放 if (ps->capacity == 0) return; //释放 free(ps->a); ps->a = NULL; ps->capacity = ps->top = 0; } void StackPush(Stack* ps,STDataType data) { assert(ps); //若容量大小等于数据个数,则说明栈已满,需扩容 if (ps->capacity == ps->top) { //若为第一次扩容,则大小为4,否则每次扩大2倍 int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2; STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity); if (tmp == NULL) { perror("realloc fail"); exit(-1); } ps->a = tmp; ps->capacity = newCapacity; } //压栈 ps->a[ps->top] = data; ps->top++; } void StackPop(Stack* ps) { assert(ps); assert(!StackEmpty(ps)); //出栈 ps->top--; } STDataType StackTop(Stack* ps) { assert(ps); assert(!StackEmpty(ps)); //返回栈顶的数据 return ps->a[ps->top - 1]; } bool StackEmpty(Stack* ps) { assert(ps); //返回top return ps->top == 0; } int StackSize(Stack* ps) { assert(ps); return ps->top; }