基于hough变换的条形码数字分割和数字识别matlab仿真

简介: 基于hough变换的条形码数字分割和数字识别matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

57c58bded9b53f94fb794cab1c3fefee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
19c703aa86ce30a6f6d6914606547258_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d90042f814a9965cb6107cd367f704ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
296be214da6eba6315dce6b06c51d226_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ae7ea26ad1c3318cd8fe075d805ac84d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9e5c794c527c8a5f93188d0cccca9b0e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   霍夫变换是一种特征提取(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空间(parameter space)中执行投票来决定物体的形状,而这是由累加空间(accumulator space)里的局部最大值(local maximum)来决定。
   现在广泛使用的霍夫变换是由RichardDuda和PeterHart在公元1972年发明,并称之为广义霍夫变换(generalizedHoughtransform),广义霍夫变换和更早前1962年的PaulHough的专利有关。经典的霍夫变换是侦测图片中的直线,之后,霍夫变换不仅能识别直线,也能够识别任何形状,常见的有圆形、椭圆形。1981年,因为DanaH.Ballard的一篇期刊论文"Generalizing the Hough transform to detect arbitrary shapes",让霍夫变换开始流行于计算机视觉界。

一条直线可以用如下的方程来表示:y=kx+b,k是直线的斜率,b是截距。

     图像是一个个离散的像素点构成的,如果在图像中有一条直线,那也是一系列的离散点构成的。那么怎样检测这些离散的点构成了直线呢?

    我们再看上面的直线方程:y=kx+b,(x,y)就是点。我们转换下变成:b=-kx+y。我们是不是也可以把(k,b)看作另外一个空间中的点?这就是k-b参数空间。

46b240b553785619c792f85ab5cc2c12_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    我们看到,图1中,在x-y图像空间中的一个点,变成了k-b参数空间中的一条直线,而x-y图像空间中的2点连成的直线,变成了k-b参数空间中的一个交点。

   如果x-y图像空间中有很多点在k-b空间中相交于一点,那么这个交点就是我们要检测的直线。这就是霍夫变换检测直线的基本原理。

   当然,有一个问题需要注意,图像空间中如果一条直线是垂直的,那么斜率k是没有定义的(或者说无穷大)。为了避免这个问题,霍夫变换采用了另一个参数空间:距离-角度参数空间。

b96ea9b968f3181d681f803ab90e20bc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   相反,图片上的点在霍夫空间就可以表示为线,我们要检测线条的话,就可以把图像上的每个点转换到霍夫空间去,找到霍夫空间上线条相交的点,就可以确定参数m, b.

3.MATLAB核心程序

Thetab=90-Thetaa;
bw1=imrotate(B,Thetab,'bicubic');
figure(7);
imshow(bw1);title('纠正后的二值图')
BW1=imrotate(BW,Thetab,'bicubic');
figure(8);
imshow(BW1);title('纠正后的边缘图')
[p,q]=size(BW1);
m=0;
for y=ceil(p/2):p
    for x=1:q
        if BW1(y,x)==1
            m=m+1
        else m=m
        end
    end
    if m<60
        y1=y
        break
    else m=0
    end
end
n=0;
for yl=floor(p/2):-1:1
    for xl=1:q
        if BW1(yl,xl)==1
            n=n+1
        else n=n
        end
    end
    if n<60
        y2=yl
        break
    else n=0
    end
end
BW2=imcrop(BW1,[1,y2,q,y1-y2]);
figure(9);imshow(BW2);title('上下分割')
bw2=imcrop(bw1,[1,y2,q,y1-y2]);
figure(10);imshow(bw2);title('上下分割')
[a,b]=size(BW2);
k=0
for yi=1:a
    for xi=1:ceil(b/3)
        if BW2(yi,xi)==1
            k=k+1
            A(k)=xi 
        else k=k
        end
    end
    K=k
    for c=1:K-4
        L1=A(c+4)-A(c+3);
        L2=A(c+3)-A(c+2);
        L3=A(c+2)-A(c+1);
        L4=A(c+1)-A(c);
        L=(L1+L2+L3)/3
        if (L2/L1)>0.5&(L2/L1)<1.5&(L3/L2)>0.5&(L3/L2)<1.5&(L4/L)>9
            C=c
            xx1=A(C)+1
            break
        else k=0
            continue
        end
    end  
end
..............................................................................
k = 1;
for i=1:59  
    if rem(i,2)
        for j=1:bar_int(i)  
            bar_01(k) = 1;
            k = k+1;
        end
    else
        for j=1:bar_int(i)  
            bar_01(k) = 0;
            k = k+1;
        end
    end
end
if ((bar_01(1)&&~bar_01(2)&&bar_01(3))...   
        &&(~bar_01(46)&&bar_01(47)&&~bar_01(48)&&bar_01(49)&&~bar_01(50))...   
        &&(bar_01(95)&&~bar_01(94)&&bar_01(93)))    
    l = 1;
    for i=1:6  
        bar_left(l) = 0;
        for k=1:7
            bar_left(l) = bar_left(l)+bar_01(7*(i-1)+k+3)*(2^(7-k));
        end
        l = l+1;
    end
    l = 1;
    for i=1:6   
        bar_right(l) = 0;
        for k=1:7
            bar_right(l) = bar_right(l)+bar_01(7*(i+6)+k+1)*(2^(7-k));
            k = k-1;
        end
        l = l+1;
    end
end
相关文章
|
14天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
14天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
20天前
|
机器学习/深度学习 算法 安全
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
|
20天前
|
计算机视觉
【图像处理】基于MATLAB的短时傅里叶变换和小波变换及图像处理(Matlab实现)
【图像处理】基于MATLAB的短时傅里叶变换和小波变换及图像处理(Matlab实现)
|
20天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
20天前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
112 0
|
24天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
24天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
143 14
|
20天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
24天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)

热门文章

最新文章