大家好啊,我是董董灿。
前言
刚毕业的时候在青岛某信任职,做嵌入式软件开发,需要调试电路板。公司有个要求是所有新入职的员工,都要去公司自己的加工厂上两周的班,亲自组装生产电路板,体验产品生产的过程。
于是,刚毕业的我,光荣的成为了一名流水线工人,虽然只有两周的时间。这期间,我和同事一起,完成过一天组装3万片电路板的成就,也完成过一天往电路板上插装不计其数电阻、电容的操作,白班夜班倒,记忆犹新。
当时的我,坐在流水线的椅子上,满脑子就一个想法:“我今天就是个螺丝钉”——真拧螺丝。也正是这一次流水线的工作体验,让我明白了一个道理——
一个产线或团队的工作效率,取决于整条流水线上动作最慢的那个人,而不是最快的那个人。一旦动作慢导致产品在你那积压,最常见的就是带小红帽的组长过来噼里啪啦说一顿。不过好在我当时手脚勤快,没有拖后腿。
在流水线上,人就是个机器,机械的执行着每一个动作。直到后来开始做芯片开发,开始给指令排流水,才恍然大悟,原来,每条指令都是流水线工人。
指令流水
上一篇计算和存储的分离说到,在冯诺依曼架构的计算体系中,计算和存储是分离的。分离的结果就是,我们可以将计算和存储分别看做两个工人,而不是一个,每个工人只负责干自己的事儿。
—— 【计算】这名工人只负责计算,【存储】这名工人只负责存储。
计算好比在厨房做菜,存储好比从厨房冰箱里将菜拿出来。这个比喻很重要,能帮你很通俗的理解流水。
那么问题来了,【一个人从冰箱里拿菜洗菜然后去做菜】和【两个人,一个专门拿菜洗菜,一个专门做菜】,哪种做饭效率高?
做过饭的同学肯定知道,当然两个人配合快了。
比如做西红柿鸡蛋,一个人需要先从冰箱拿出鸡蛋,记需要花费 A 的时间,然后炒鸡蛋需要花费B的时间,然后回去拿出西红柿,需要花费C的时间,然后将西红柿和鸡蛋一起炒,需要花费D的时间。总共花费 A + B + C + D的时间。
而两个人的话,第一个人从冰箱里拿出鸡蛋,记A的时间,第二个人炒鸡蛋,花费B的时间,而此时,在第二个人炒鸡蛋的同时,第一个人可以同时去拿出西红柿,需要花费C的时间,然后第二个人抄完鸡蛋后,接过第一个人的西红柿一起炒,需要花费D的时间。总共花费 A + MAX(B,C) + D 的时间。
两个一比较,肯定两个人做饭时间花的少吧。
而两个人做饭时,B,C同时进行,就像流水线上的工人一样,你负责你的事,我负责我的事,我做完就给下一个人,下一个人动作快的话,可以立刻接过去,动作慢的话,就会导致产品积压。
在计算机的体系结构中,计算指令和存储指令,一般都是两条独立的指令,并且在硬件部件上,是两个独立的硬件部件,比如计算是ALU单元,存储是DMA或load/store单元等。
独立的硬件部件和独立的指令设计,天然的保证了两条指令之间可以排流水,就像流水线上的工人一样工作。
还是拿卷积算法举例子,我先计算上半张图片,同时你就可以搬运下半张图片的数据,整体的AI计算开销,就会少很多。
从而起到了推理加速的作用。
不仅如此,在指令集设计或硬件设计时,一般都会考虑流水线的设计,从而完成更高效的计算和访存操作。
可进行流水操作的指令,也绝不仅仅只有计算指令和存储指令等,不同的计算单元之间,也是可以排流水的。
比如卷积层后面接一个池化层,那么在计算第二部分卷积的同时,可以计算第一部分池化。
流水线的发明对于制造业来说是一次技术变革。早期的手工制造业是靠大量人工完成的,这种工作方式要求每个工作者要了解整个成品的完整制造过程,要快速的制造出一个成品需要对整个工序、流程非常熟悉,无形中提高了对工人素质的要求。而流水线的出现,不需要工人了解整个流程,为手工制造业实现了半自动化,加快了加工速度。
好啦,本篇就简单介绍了一种推理优化的常见方式,那就是通过对指令排流水的方式,可以完成指令加速,从而完成推理优化。
后面会继续深入的讨论更多推理优化加速的方法,敬请关注。
本文为作者原创,请勿转载,如需转载,请于作者联系