图表解析系列之漏斗图

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策。

释义

漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策。漏斗图的起始总是100%,并在各个环节依次减少,漏斗图用梯形面积表示某个环节业务量与上一个环节之间的差异。漏斗图从上到下,有逻辑上的顺序关系,表现了随着业务流程的推进业务目标完成的情况(如用户的转化情况、订单的处理情况、招聘的录用情况等)。一般来说,所有梯形的高度应是一致的,这会有助人们辨别数值间的差异。

应用示例

数据情况如下,主要为公司在某一阶段对于招聘情况的统计,属于单流程,且各个环节直接具备逻辑关系。

使用漏斗图展示如下所示,能够清晰的观察到在招聘的各个环节中人员数量的变化情况。

适用场景

1.数据是有序的,彼此之间有逻辑上的顺序关系,阶段最好大于3个;

2.该流程应是“消耗性”的流程,如在电商领域,从用户注册到下单;在人力领域,从收到简历到入职等等情况,如下图示例;

3.在实际应用中,漏斗图很适合于跟踪用户的转化率和保留率、跟踪点击广告/市场营销活动的进度和成功率,以及揭示线性流程中的瓶颈。在新闻领域,漏斗图也较适合社会平等、阶层分化、资源分配等的话题。

不适用场景

漏斗图不适合没有逻辑关系的数据,换句话说,如果数据不构成“流程”,那么不能使用漏斗图。例如下图所示,展示了大学一些课程的学生到课率,每门课之间的到课人数没有逻辑上的影响关系,不构成漏斗的流程。

作为一种统计图表,漏斗图的“长相”,本质上是由数据决定的。梯形的高度、面积都是有意义的,不应想当然的篡改。以下图为例,本意是想表现男性和女性在 STEM 领域的表现差异,但是漏斗的形状与实际的数据完全对不上。

在传达数据时,漏斗图是通过“面积”表示的,对于人眼来说,面积的识别本来就不太容易。如果我们在制作漏斗图时,再人为的改变漏斗中每一个梯形的高度,那么识别起来就十分困难。

更多场景示例

1.互联网产品的 AARRR 模型,包含了获客、日活、留存、转化、变现等一系列追踪指标。

2.分析社会现象,如美国的“篮球漏斗”。最上方是在高中打篮球的男孩,最后是进入 NBA 打职业篮球的男孩。

相关文章
|
5月前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
【7月更文挑战第12天】Python进阶必学:DFS和BFS图遍历算法。理解图概念,用邻接表建无向图,实现DFS和BFS。DFS适用于查找路径,BFS解决最短路径。通过实例代码加深理解,提升编程技能。
47 4
|
6月前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
1335 2
|
6月前
|
文字识别 算法 API
印刷文字识别产品使用合集之适合解析图表吗
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
Cloud Native Go 开发工具
如何让CSDN学习成就个人能力六边形全是100分:解析个人能力雷达图的窍门
如何让CSDN学习成就个人能力六边形全是100分:解析个人能力雷达图的窍门
320 0
|
7月前
|
开发工具 数据安全/隐私保护 Android开发
视觉智能平台常见问题之图片解析出的水印图判断是自己添加的水印图如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
104 1
|
7月前
|
算法 Java
Java必刷入门递归题×5(内附详细递归解析图)
Java必刷入门递归题×5(内附详细递归解析图)
98 1
|
7月前
|
存储 算法 Serverless
【软件设计师备考 专题 】数据结构深度解析:从数组到图
【软件设计师备考 专题 】数据结构深度解析:从数组到图
100 0
|
机器学习/深度学习 自然语言处理 测试技术
【论文速递】CASE 2022 - EventGraph: 将事件抽取当作语义图解析任务
事件抽取涉及到事件触发词和相应事件论元的检测和抽取。现有系统经常将事件抽取分解为多个子任务,而不考虑它们之间可能的交互。
125 0
|
机器学习/深度学习 人工智能 算法
【图神经网络】 - GNN的几个模型及论文解析(NN4G、GAT、GCN)
【图神经网络】 - GNN的几个模型及论文解析(NN4G、GAT、GCN)
703 1
【图神经网络】 - GNN的几个模型及论文解析(NN4G、GAT、GCN)
|
监控 数据可视化 前端开发
火焰图是怎么画出来的?Pyroscope源码解析之火焰图
火焰图简述火焰图(Flame Graph) 由Brendan Gregg在2011年创造,是一种可视化程序性能分析工具,它可以帮助开发人员追踪程序的函数调用以及调用所占用的时间,并且展示出这些信息。一般性解释火焰图的基本思想是将程序的函数调用栈转化为一个矩形的 “火焰” 形图像,每个矩形的宽度表示该函数所占用的比例,高度表示函数的调用深度(也就是递归调用的层数)。通过比较不同时间点的火焰图,可以快
627 0

推荐镜像

更多