好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。 事实上,Google Bard并非对标ChatGPT的产品,Bard是基于LaMDA模型对话而进行构建的,Bard旨在构建一个对话式的AI系统,使其能够更好地理解人类语言,并且具备进行多轮对话的能力。而GPT的目标是生成自然语言文本。

谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。

事实上,Google Bard并非对标ChatGPT的产品,Bard是基于LaMDA模型对话而进行构建的,Bard旨在构建一个对话式的AI系统,使其能够更好地理解人类语言,并且具备进行多轮对话的能力。而GPT的目标是生成自然语言文本。

在特征数据层面,Bard使用了像Gmail、Meet等Google社交产品线中的对话数据来进行训练,这些数据已经经过了严格的隐私保护措施。而GPT则是通过大规模的网页爬虫来获取数据,它的训练数据量比LaMDA要大得多。

模型结构层面,Bard采用了一种称为“Transformer”的神经网络结构,该结构可以处理长文本并保持信息连贯性。GPT也使用了Transformer结构,但它还采用了一种称为“自回归”的方式,即按照时间步骤一个接一个地生成文本。

说白了,在应用层面上,Bard适合开发智能助手、聊天机器人、虚拟客服等应用。而GPT更适用于自然语言生成任务,例如文章撰写、机器翻译等等。

Bard对话测试(英文/中文)

访问 bard.google.com ,随后输入聊天内容:

一望而知,对话输入的内容只支持英文,并不能输入中文。

但事实上,只要稍微改变一下对话逻辑,也可以让Bard返回中文信息,比如:

Bard代码能力

私以为Bard的代码能力并不输于ChatGPT:

尤其是对自家的深度学习框架Tensorflow更是如数家珍,生成的代码如下:

import tensorflow as tf  
  
def load_model():  
  """Loads the TensorFlow image recognition model."""  
  model = tf.keras.models.load_model('mobilenet_v2_1.0_224')  
  return model  
  
def recognize_objects(image):  
  """Recognizes objects in an image."""  
  # Convert the image to a tensor.  
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)  
  
  # Resize the image to 224x224 pixels.  
  image = tf.image.resize(image, [224, 224])  
  
  # Normalize the image.  
  image = tf.image.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  
  
  # Predict the labels of the objects in the image.  
  predictions = model.predict(image)  
  
  # Return the labels of the objects in the image.  
  return predictions  
  
def main():  
  # Load the image recognition model.  
  model = load_model()  
  
  # Load an image.  
  image = tf.io.read_file('image.jpg')  
  
  # Recognize objects in the image.  
  predictions = recognize_objects(image)  
  
  # Print the labels of the objects in the image.  
  for prediction in predictions:  
    print(prediction)  
  
if __name__ == '__main__':  
  main()
AI 代码解读

这里是使用Tensorflow内置小模型mobilenet\_v2\_1.0\_224的智能识图逻辑,简洁而严谨。

Bard网络架构

在浏览器(B端)架构上,Google极其自信地使用了HTTP2协议的接口进行通信,而没有仿效ChatGPT使用SSE协议:

我们知道ChatGPT使用SSE协议其实是等而下之的次优选择,因为GPT模型在推理上需要时间,所以走的模式是一边推理一边返回的流式模型,关于流式返回,请移玉步至:逐句回答,流式返回,ChatGPT采用的Server-sent events后端实时推送协议Python3.10实现,基于Tornado6.1,这里不再赘述。

而Google的Bard选择一次性返回所有推理数据:

所以推理效率上,Bard要优于ChatGPT,但仅限于免费产品线,截止本文发布,ChatGPT的收费产品gpt3-turbo和gpt4的推理效率都要远远高于其免费产品。

Bard的远程接口API调用

和免费版本的ChatGPT一样,Bard目前只支持浏览器端(B端)的使用,但也可以通过浏览器保存的Token进行远程调用,首先安装Bard开源库:

pip3 install --upgrade GoogleBard
AI 代码解读

随后复制浏览器端的token秘钥:

接着在终端通过Session进行注入:

python3 -m Bard --session UggPYghLzQdQTNx1kQiCRzbPBA1qhjC-dndTiIPCk3YPLR5TexmP7OQ7AfUdsfdsf1Q.
AI 代码解读

随后就可以进入终端内的对话场景,使用alt+enter组合键或者esc+enter组合键发送信息即可:

➜  work python3 -m Bard --session UggPYghLzQdQTNx1kQiCRzbPBA1qhjC-dndTiIPCk3YPLR5TexmP7OQdfgdfgdfUSg0UQ.  
  
        Bard - A command-line interface to Google's Bard (https://bard.google.com/)  
        Repo: github.com/acheong08/Bard  
  
        Enter `alt+enter` or `esc+enter` to send a message.  
          
You:  
hi  
   
   
  
Google Bard:  
Hi there! How can I help you today?
AI 代码解读

非常方便,主要是速度相当惊艳。

结语

仅就免费版本所提供的产品力而言,Google Bard和ChatGPT可谓是各有千秋,私以为Google Bard在效率和使用逻辑上要更胜一筹,并不是网上所传言的那么不堪。所谓一枝独秀不是春,百花齐放才是春满园,Google Bard和百度的文心一言,都会对ChatGPT形成压力,让ChatGPT保持光速更新,成为更好的自己。

目录
打赏
0
0
0
0
1681
分享
相关文章
AI望远镜:人工智能是如何发现“藏在宇宙角落的新星系”的?
AI望远镜:人工智能是如何发现“藏在宇宙角落的新星系”的?
120 64
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
135 11
200行python代码实现从Bigram模型到LLM
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
623 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
我国“AI+X”跨界人才培养:如何通过职业技能培训,把握人工智能就业机遇?
在“AI+X”时代,人工智能与各行业的深度融合正在重塑职业图景和人才标准。跨界能力成为核心竞争力,要求从业者既能将专业问题转化为AI可理解的框架,又能将技术输出转化为实际业务价值。这推动了职业技能培训从单一技术传授向复合能力培养转型,强调知识架构重组、场景化学习和伦理判断力培养。个人发展需构建“认知-实践-认证”的闭环路径,持续更新技能以适应快速迭代的技术环境。未来属于既懂行业本质又能驾驭技术的跨界者,他们将成为推动社会进步的关键力量。职业技能培训的使命在于赋能学习者,在技术与人文之间找到平衡,实现从专业从业者到领域创新者的蜕变。
AI的万亿商机:红杉资本眼中的人工智能新时代
AI不仅仅是不可避免的趋势,而是已经到来的现实,其市场规模将远超过去的任何一次技术变革。这不是一场可以观望的比赛,而是一场必须全力以赴参与的革命。
182 22
ai人工智能课程学什么
本内容全面介绍了AI课程的核心体系,涵盖基础理论、核心算法、应用领域及伦理责任等方面。从数学基础与编程技能到机器学习和深度学习算法,再到自然语言处理与计算机视觉等应用领域,系统阐述了AI技术的全貌。同时探讨了开发框架如TensorFlow和PyTorch的使用,并关注AI伦理与社会责任。通过分步验证与实践经验,帮助学习者规避AI局限性。展望未来,生成式人工智能等新兴技术将持续推动课程发展,助力职业成长与社会进步。
人工智能与ai有什么区别
本文探讨了“人工智能”与“AI”在语义、使用场景及技术侧重点上的差异,强调理解这些差异对把握技术发展的重要性。文中分析了两者的学术与通俗应用场景,并结合生成式人工智能认证项目(由培生于2024年推出),说明如何通过理论与实践结合,规避AI局限性,推动技术创新。最终呼吁在概念辨析中探索人工智能的未来潜力。
Burp Suite Professional 2025.3 发布,引入 Burp AI 通过人工智能增强安全测试工作流程
Burp Suite Professional 2025.3 发布,引入 Burp AI 通过人工智能增强安全测试工作流程
279 0
Burp Suite Professional 2025.3 发布,引入 Burp AI 通过人工智能增强安全测试工作流程
Jmeter工具使用:HTTP接口性能测试实战
希望这篇文章能够帮助你初步理解如何使用JMeter进行HTTP接口性能测试,有兴趣的话,你可以研究更多关于JMeter的内容。记住,只有理解并掌握了这些工具,你才能充分利用它们发挥其应有的价值。+
314 23
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问