好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。 事实上,Google Bard并非对标ChatGPT的产品,Bard是基于LaMDA模型对话而进行构建的,Bard旨在构建一个对话式的AI系统,使其能够更好地理解人类语言,并且具备进行多轮对话的能力。而GPT的目标是生成自然语言文本。

谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和OpenAI的ChatGPT进行对比,Google Bard在ChatGPT面前似乎有些技不如人。

事实上,Google Bard并非对标ChatGPT的产品,Bard是基于LaMDA模型对话而进行构建的,Bard旨在构建一个对话式的AI系统,使其能够更好地理解人类语言,并且具备进行多轮对话的能力。而GPT的目标是生成自然语言文本。

在特征数据层面,Bard使用了像Gmail、Meet等Google社交产品线中的对话数据来进行训练,这些数据已经经过了严格的隐私保护措施。而GPT则是通过大规模的网页爬虫来获取数据,它的训练数据量比LaMDA要大得多。

模型结构层面,Bard采用了一种称为“Transformer”的神经网络结构,该结构可以处理长文本并保持信息连贯性。GPT也使用了Transformer结构,但它还采用了一种称为“自回归”的方式,即按照时间步骤一个接一个地生成文本。

说白了,在应用层面上,Bard适合开发智能助手、聊天机器人、虚拟客服等应用。而GPT更适用于自然语言生成任务,例如文章撰写、机器翻译等等。

Bard对话测试(英文/中文)

访问 bard.google.com ,随后输入聊天内容:

一望而知,对话输入的内容只支持英文,并不能输入中文。

但事实上,只要稍微改变一下对话逻辑,也可以让Bard返回中文信息,比如:

Bard代码能力

私以为Bard的代码能力并不输于ChatGPT:

尤其是对自家的深度学习框架Tensorflow更是如数家珍,生成的代码如下:

import tensorflow as tf  
  
def load_model():  
  """Loads the TensorFlow image recognition model."""  
  model = tf.keras.models.load_model('mobilenet_v2_1.0_224')  
  return model  
  
def recognize_objects(image):  
  """Recognizes objects in an image."""  
  # Convert the image to a tensor.  
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)  
  
  # Resize the image to 224x224 pixels.  
  image = tf.image.resize(image, [224, 224])  
  
  # Normalize the image.  
  image = tf.image.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  
  
  # Predict the labels of the objects in the image.  
  predictions = model.predict(image)  
  
  # Return the labels of the objects in the image.  
  return predictions  
  
def main():  
  # Load the image recognition model.  
  model = load_model()  
  
  # Load an image.  
  image = tf.io.read_file('image.jpg')  
  
  # Recognize objects in the image.  
  predictions = recognize_objects(image)  
  
  # Print the labels of the objects in the image.  
  for prediction in predictions:  
    print(prediction)  
  
if __name__ == '__main__':  
  main()

这里是使用Tensorflow内置小模型mobilenet\_v2\_1.0\_224的智能识图逻辑,简洁而严谨。

Bard网络架构

在浏览器(B端)架构上,Google极其自信地使用了HTTP2协议的接口进行通信,而没有仿效ChatGPT使用SSE协议:

我们知道ChatGPT使用SSE协议其实是等而下之的次优选择,因为GPT模型在推理上需要时间,所以走的模式是一边推理一边返回的流式模型,关于流式返回,请移玉步至:逐句回答,流式返回,ChatGPT采用的Server-sent events后端实时推送协议Python3.10实现,基于Tornado6.1,这里不再赘述。

而Google的Bard选择一次性返回所有推理数据:

所以推理效率上,Bard要优于ChatGPT,但仅限于免费产品线,截止本文发布,ChatGPT的收费产品gpt3-turbo和gpt4的推理效率都要远远高于其免费产品。

Bard的远程接口API调用

和免费版本的ChatGPT一样,Bard目前只支持浏览器端(B端)的使用,但也可以通过浏览器保存的Token进行远程调用,首先安装Bard开源库:

pip3 install --upgrade GoogleBard

随后复制浏览器端的token秘钥:

接着在终端通过Session进行注入:

python3 -m Bard --session UggPYghLzQdQTNx1kQiCRzbPBA1qhjC-dndTiIPCk3YPLR5TexmP7OQ7AfUdsfdsf1Q.

随后就可以进入终端内的对话场景,使用alt+enter组合键或者esc+enter组合键发送信息即可:

➜  work python3 -m Bard --session UggPYghLzQdQTNx1kQiCRzbPBA1qhjC-dndTiIPCk3YPLR5TexmP7OQdfgdfgdfUSg0UQ.  
  
        Bard - A command-line interface to Google's Bard (https://bard.google.com/)  
        Repo: github.com/acheong08/Bard  
  
        Enter `alt+enter` or `esc+enter` to send a message.  
          
You:  
hi  
   
   
  
Google Bard:  
Hi there! How can I help you today?

非常方便,主要是速度相当惊艳。

结语

仅就免费版本所提供的产品力而言,Google Bard和ChatGPT可谓是各有千秋,私以为Google Bard在效率和使用逻辑上要更胜一筹,并不是网上所传言的那么不堪。所谓一枝独秀不是春,百花齐放才是春满园,Google Bard和百度的文心一言,都会对ChatGPT形成压力,让ChatGPT保持光速更新,成为更好的自己。

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
39 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
13天前
|
人工智能 IDE API
AI驱动的开发者工具:打造沉浸式API集成体验
本文介绍了阿里云在过去十年中为开发者提供的API服务演变。内容分为两大部分:一是从零开始使用API的用户旅程,涵盖API的发现、调试与集成;二是回顾阿里云过去十年为开发者提供的服务及发展历程。文中详细描述了API从最初的手写SDK到自动化生成SDK的变化,以及通过API Explorer、IDE插件和AI助手等工具提升开发者体验的过程。这些工具和服务旨在帮助开发者更高效地使用API,减少配置和调试的复杂性,提供一站式的解决方案。
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
109 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
15天前
|
人工智能 JSON 安全
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
DeepSeek Engineer 是一款开源AI编程助手,通过命令行界面处理用户对话并生成结构化JSON,支持文件操作和代码生成。
179 5
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
183 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
21天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
185 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
19天前
|
人工智能 自然语言处理 API
自学记录HarmonyOS Next的HMS AI API 13:语音合成与语音识别
在完成图像处理项目后,我计划研究HarmonyOS Next API 13中的AI语音技术,包括HMS AI Text-to-Speech和Speech Recognizer。这些API提供了强大的语音合成与识别功能,支持多语言、自定义语速和音调。通过这些API,我将开发一个支持语音输入与输出的“语音助手”原型应用,实现从语音指令解析到语音响应的完整流程。此项目不仅提高了应用的交互性,也为开发者提供了广阔的创新空间。未来,语音技术将在无障碍应用和智慧城市等领域展现巨大潜力。如果你也对语音技术感兴趣,不妨一起探索这个充满无限可能的领域。 (238字符)
87 11
|
1月前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
84 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####

热门文章

最新文章