异步 IO是干什么的?底层原理是什么?

简介: 异步 IO是干什么的?底层原理是什么?

异步 I/O(Input/Output)是一种处理 I/O 操作的编程模型,它的目的是通过异步的方式来提高程序的并发性和吞吐量。在传统的同步 I/O 模型中,当程序向操作系统请求进行 I/O 操作时,它必须等待操作系统完成这个操作,然后才能进行下一个操作。这种方式在处理大量 I/O 操作时会导致程序的效率很低,因为它必须等待 I/O 操作完成才能进行下一个操作。

异步 I/O 模型通过使用回调函数的方式来处理 I/O 操作,这样程序可以在等待 I/O 操作完成的同时继续执行其他操作,从而提高程序的并发性和吞吐量。

异步 I/O 的底层原理涉及到操作系统的内核和事件驱动编程的概念。在异步 I/O 模型中,当程序请求进行 I/O 操作时,它会向操作系统发送一个请求,并注册一个回调函数来处理操作完成后的结果。操作系统会将这个请求加入到一个队列中,并继续执行其他任务。当 I/O 操作完成后,操作系统会将结果发送给程序,并调用注册的回调函数来处理这个结果。

为了实现异步 I/O,操作系统需要提供一些机制来处理事件的发生和处理。例如,Linux 提供了 epoll 和 select 等机制来实现异步 I/O。当程序使用这些机制时,它可以将文件描述符注册到一个事件集合中,并告诉操作系统要监视哪些事件。当事件发生时,操作系统会通知程序并让它处理这些事件。

在事件驱动编程中,程序会使用事件循环来处理事件。事件循环会不断地从事件队列中取出事件,并调用相应的回调函数来处理这些事件。通过这种方式,程序可以不断地处理事件,而不需要等待某个事件的完成。

相关文章
|
1月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
39 2
|
2月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
40 4
|
6月前
|
调度 数据库 Python
【专栏】异步IO在处理IO密集型任务中的高效性
【4月更文挑战第27天】本文介绍了Python并发编程和异步IO,包括并发的基本概念(多线程、多进程、协程),线程与进程的实现(threading和multiprocessing模块),协程的使用(asyncio模块),以及异步IO的原理和优势。强调了异步IO在处理IO密集型任务中的高效性,指出应根据任务类型选择合适的并发技术。
156 2
|
2月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
83 0
|
4月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
【7月更文挑战第17天】Python并发编程中,异步编程(如`asyncio`)在IO密集型任务中提高效率,利用等待时间执行其他任务。但对CPU密集型任务,由于GIL限制,多线程效率不高,此时应选用`multiprocessing`进行多进程并行计算以突破限制。选择合适的并发策略是关键:异步适合IO,多进程适合CPU。理解这些能帮助构建高效并发程序。
110 6
|
4月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
【7月更文挑战第17天】在数据驱动时代,Python凭借其优雅语法和强大库支持成为并发处理大规模数据的首选。并发与异步编程是关键,包括多线程、多进程和异步IO。对于IO密集型任务,如网络请求,可使用`concurrent.futures`和`asyncio`;CPU密集型任务则推荐多进程,如`multiprocessing`;`asyncio`适用于混合任务,实现等待IO时执行CPU任务。通过这些工具,开发者能有效优化资源,提升系统性能。
89 4
|
4月前
|
开发框架 并行计算 .NET
从菜鸟到大神:Python并发编程深度剖析,IO与CPU的异步战争!
【7月更文挑战第18天】Python并发涉及多线程、多进程和异步IO(asyncio)。异步IO适合IO密集型任务,如并发HTTP请求,能避免等待提高效率。多进程在CPU密集型任务中更优,因可绕过GIL限制实现并行计算。通过正确选择并发策略,开发者能提升应用性能和响应速度。
105 3
|
4月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
【7月更文挑战第18天】Python并发编程中,异步IO适合IO密集型任务,如异步HTTP请求,利用`asyncio`和`aiohttp`实现并发抓取,避免等待延迟。而对于CPU密集型任务,如并行计算斐波那契数列,多进程通过`multiprocessing`库能绕过GIL限制实现并行计算。选择正确的并发模型能显著提升性能。
85 2
|
4月前
|
开发框架 数据挖掘 .NET
显微镜下的Python并发:细说IO与CPU密集型任务的异步差异,助你精准施策!
【7月更文挑战第16天】在Python并发编程中,理解和区分IO密集型与CPU密集型任务至关重要。IO密集型任务(如网络请求)适合使用异步编程(如`asyncio`),以利用等待时间执行其他任务,提高效率。CPU密集型任务(如计算)则推荐使用多进程(如`multiprocessing`),绕过GIL限制,利用多核CPU。正确选择并发策略能优化应用性能。
61 2
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在Flink算子内部使用异步IO可以通过什么办法实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。