《人工智能:计算Agent基础》——2.7 参考文献及进一步阅读

简介:

本节书摘来自华章计算机《人工智能:计算Agent基础》一书中的第2章,第2.7节,作者:(加)David L.Poole,Alan K.Mackworth 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.7 参考文献及进一步阅读

Agent系统的模型是基于Zhang、Mackworth[1995]的关于约束网络的工作和Rosenschein、Kaelbling[1995]的工作,分层控制则是基于Albus[1981]的工作和Brooks[1986]等人的关于包含结构的工作。Abelson、DiSessa[1981]的Turtle Geometry从建模简单反应式Agent角度介绍了相关数学理论。Luenberger[1979]则是一篇值得一读的关于Agent与环境交互的经典理论的简介。Simon[1996]则介绍了分层控制的重要性。
更多的Agent控制细节可以参看Dean和Wellman[1991]、Latombe[1991]和Agre[1995]。
构建智能Agent的方法论在 Haugeland[1985]、Brooks[1991]、Kirsh[1991b]和Mackworth[1993]中多有介绍。
定量推理在Forbus[1996]和Kuipers[2001]中有讲述。Weld和de Kleer[1990]中有很多关于定性推理的精华,同样,Weld[1992]也是关于此问题的。至于近期的综述可查看Price、Trav-Massuys、Milne、Ironi、Forbus、Bredeweg、Lee、Struss、Snooke、Lucas、Cavazza和Coghill[2006]。

相关文章
AI Agent 十问十答,降低认知摩擦
本文探讨了AI Agent的相关概念和技术细节,包括其定义、与传统软件的区别、构成组件、工作原理及优化方法。AI Agent是一种基于大语言模型(LLM)的智能代理,能感知环境、推理决策并执行任务。相比传统自动化软件,AI Agent具备更强的理解力和自主性,可处理复杂任务。文章分析了Chatbot向AI Agent演进的趋势及其驱动因素,并详解了提升AI Agent效果的关键要素如模型质量、工具选择和指令设计。此外,还讨论了Workflow与LLM的结合方式以及单智能体与多智能体系统的优劣,为理解和应用AI Agent提供了全面视角。
825 170
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
谷歌开源的Agent Development Kit(ADK)是首个代码优先的Python工具包,通过多智能体架构和灵活编排系统,支持开发者在百行代码内构建复杂AI代理,提供预置工具库与动态工作流定义能力。
200 3
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
244 45
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
Cooragent:清华 LeapLab 开源 AI Agent 协作框架,一句话召唤AI军团!
Cooragent 是清华大学 LeapLab 团队推出的开源 AI Agent 协作框架,支持基于简单描述快速创建 Agent 并实现多 Agent 协作,具备 Prompt-Free 设计和本地部署能力。
201 6
Cooragent:清华 LeapLab 开源 AI Agent 协作框架,一句话召唤AI军团!
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
219 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
表格存储:为 AI 注入“记忆”,构建大规模、高性能、低成本的 Agent Memory 数据底座
本文探讨了AI Agent市场爆发增长背景下的存储需求,重点介绍了Tablestore在Agent Memory存储中的优势。2025年被视为AI Agent市场元年,关键事件推动技术发展。AI Agent的存储分为Memory(短期记忆)和Knowledge(长期知识)。Tablestore通过高性能、低成本持久化存储、灵活的Schemaless设计等特性满足Memory场景需求;在Knowledge场景中,其多元索引支持全文、向量检索等功能,优化成本与稳定性。实际案例包括通义App、某浏览器及阿里云多项服务,展示Tablestore的卓越表现。最后邀请加入钉钉群共同探讨AI技术。
617 11
让AI学会"看屏幕操作"!豆包1.5·UI-TARS:字节跳动推出 GUI Agent 黑科技,办公效率暴增300%
字节跳动推出的豆包1.5·UI-TARS是首个整合视觉理解、逻辑推理与界面操作的GUI Agent模型,无需预定义规则即可完成复杂图形界面交互任务,已在火山方舟平台提供服务。
192 2
让AI学会"看屏幕操作"!豆包1.5·UI-TARS:字节跳动推出 GUI Agent 黑科技,办公效率暴增300%
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2872 13
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。像 Manus 这样基于「预先编排好的提示词与工具路径」构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种「提示驱动」的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。下一代真正的LLM智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现的。
161 10
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
一个支持阿里云百炼平台DeepSeek R1大模型(智能体)的Wordpress插件,AI Agent or Chatbot.
这是一个将阿里云DeepSeek AI服务集成到WordPress的聊天机器人插件,支持多轮对话、上下文记忆和自定义界面等功能。用户可通过短代码轻松添加到页面,并支持多种配置选项以满足不同需求。项目采用MIT协议授权,代码仓位于GitHub与Gitee。开发者Chi Leung为长期境外工作,代码注释以英文为主。适合需要在WordPress网站中快速部署AI助手的用户使用。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等