【大数据开发运维解决方案】Kylin消费Kafka数据流式构建cube

本文涉及的产品
云原生网关 MSE Higress,422元/月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 文章开始之前先说明环境情况,这里kylin消费的kafka数据是从Oracle 数据库用Ogg For Bigdata以json格式将数据投递到kafka topic的,投递的时候,关于insert和update 之前的数据投递到名为 ZTVOUCHER_INS 的topic,而delete和update之后的数据投递到名为 ZTVOUCHER_DEL 的topic中,这里主要介绍kylin如何消费数据创建流式cube。

文章开始之前先说明环境情况,这里kylin消费的kafka数据是从Oracle 数据库用Ogg For Bigdata以json格式将数据投递到kafka topic的,投递的时候,关于insert和update 之前的数据投递到名为 ZTVOUCHER_INS 的topic,而delete和update之后的数据投递到名为 ZTVOUCHER_DEL 的topic中,这里主要介绍kylin如何消费数据创建流式cube。

一、源端做DML操作

1.源端表ztvoucher目前没有数据,现在做insert,并查询:


insert into ztvoucher (MANDT, GJAHR, BUKRS, BELNR, BUZEI, MONAT, BUDAT, HKONT, DMBTR, ZZ0014)
values ('666', '2222', '3432', '2200001414', '001', '01', '20190101', '9101000000', 100.00, '101');

1 row created.

SQL> commit;

Commit complete.

SQL> alter system switch logfile;

System altered.
SQL>  select * from ztvoucher;
MANDT    GJAHR    BUKRS    BELNR    BUZEI    MONAT    BUDAT    HKONT    DMBTR    ZZ0014
666    2222    3432    2200001414    001    01    20190101    9101000000    100.00    101

2.去kafka查看:

[root@hadoop kafka]# ./console.sh 
input topic:ZTVOUCHER_INS
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a future major release. Consider using the new consumer by passing [bootstrap-server] instead of [zookeeper]
.{"table":"SCOTT.ZTVOUCHER_INS","op_type":"I","op_ts":"2019-05-22 16:18:58.353767","current_ts":"2019-05-22T16:19:11.352000","pos":"00000000080000012086","tokens":{"TKN-OP-TYPE":"INSERT"},"a
fter":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":100.00,"ZZ0014":"101"}}

发现源端做的insert已经在 topic:ZTVOUCHER_INS有了。
3.源端做update操作:

update ztvoucher set dmbtr=50 where mandt='666';
commit;
alter system switch logfile;

4.去kafka查看:
先看ZTOVOUCHER_INS 内容:

[root@hadoop kafka]# ./console.sh 
input topic:ZTVOUCHER_INS
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a future major release. Consider using the new consumer by passing [bootstrap-server] instead of [zookeeper]
.{"table":"SCOTT.ZTVOUCHER_INS","op_type":"I","op_ts":"2019-05-22 16:18:58.353767","current_ts":"2019-05-22T16:19:11.352000","pos":"00000000080000012086","tokens":{"TKN-OP-TYPE":"INSERT"},"a
fter":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":100.00,"ZZ0014":"101"}}{"table":"SCOTT.ZTVOUCHER_INS","op_type":"I","op_ts":"2019-05-22 16:22:48.354189","current_ts":"2019-05-22T16:23:33.799000","pos":"00000000080000012613","tokens":{"TKN-OP-TYPE":"SQL COMPUPD
ATE"},"after":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":50.00,"ZZ0014":"101"}}

发现除了之前的insert操作,现在update之后的数据也进来了。
再看ZTVOUCHER_DEL:

[root@hadoop kafka]# ./console.sh 
input topic:ZTVOUCHER_DEL
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a future major release. Consider using the new consumer by passing [bootstrap-server] instead of [zookeeper]
.{"table":"SCOTT.ZTVOUCHER_DEL","op_type":"I","op_ts":"2019-05-22 16:22:48.354189","current_ts":"2019-05-22T16:23:23.781000","pos":"00000000080000012345","tokens":{"TKN-OP-TYPE":"SQL COMPUPD
ATE"},"after":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":100.00,"ZZ0014":"101"}}

发现DEL的topic中也存入了update之前的数据。
5.源端做delete操作:

delete from ztvoucher where mandt='666';
commit;
alter system switch logfile;

6.去kafka查看:

[root@hadoop kafka]# ./console.sh 
input topic:ZTVOUCHER_DEL
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a future major release. Consider using the new consumer by passing [bootstrap-server] instead of [zookeeper]
.{"table":"SCOTT.ZTVOUCHER_DEL","op_type":"I","op_ts":"2019-05-22 16:22:48.354189","current_ts":"2019-05-22T16:23:23.781000","pos":"00000000080000012345","tokens":{"TKN-OP-TYPE":"SQL COMPUPD
ATE"},"after":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":100.00,"ZZ0014":"101"}}{"table":"SCOTT.ZTVOUCHER_DEL","op_type":"I","op_ts":"2019-05-22 16:26:26.353705","current_ts":"2019-05-22T16:27:15.049000","pos":"00000000080000012857","tokens":{"TKN-OP-TYPE":"DELETE"},"a
fter":{"MANDT":"666","GJAHR":"2222","BUKRS":"3432","BELNR":"2200001414","BUZEI":"001","MONAT":"01","BUDAT":"20190101","HKONT":"9101000000","DMBTR":50.00,"ZZ0014":"101"}}

发现除了上面update之前的数据以外,还写入了刚做的delete操作的数据。
好了,现在数据都组织好了,现在去流式创建cube。

二、流式构建cube

流式构建cube官方连接(本人用的2.4版本):
http://kylin.apache.org/cn/docs24/tutorial/cube_streaming.html
流式构建cube需要一个类型为timestamp的时间列字段用来标识消息的时间,从前面两个topic中的json数据可以看到,op_ts字段满足这个要求。
1、用j'son数据定义一张表
先来构建

相关文章
|
20天前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
2月前
|
SQL 存储 运维
从建模到运维:联犀如何完美融入时序数据库 TDengine 实现物联网数据流畅管理
本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品。文章从一个具体的业务场景出发,分析了企业在面对海量时序数据时的挑战,并提出了利用 TDengine 高效处理和存储数据的方法,帮助企业解决在数据采集、存储、分析等方面的痛点。通过这篇文章,作者不仅展示了自己对数据处理技术的理解,还进一步阐释了时序数据库在行业中的潜力与应用价值,为读者提供了很多实际的操作思路和技术选型的参考。
53 1
|
2月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
287 3
|
2月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
3月前
|
运维 监控 关系型数据库
数据库管理中的自动化运维:挑战与解决方案
数据库管理中的自动化运维:挑战与解决方案
|
3月前
|
运维 监控 安全
云计算环境下的运维挑战与解决方案
本文探讨了云计算环境中运维面临的主要挑战,包括资源管理、自动化部署、安全性问题等,并提出了相应的解决策略。通过案例分析和最佳实践,为云环境下的运维工作提供了指导和参考。
103 1
|
4月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
175 10
|
3月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
122 1
|
4月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
89 3
|
3月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
73 0