39-微服务技术栈(高级):分布式搜索引擎ElasticSearch(索引库、文档操作)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 在前面读者朋友们可以了解到ES承载着和MySQL一样的“存储-查询”功能,那么就类似的会有建表语句、表结构、表数据,有了这些才可以存储-查询数据。而这些对应的在ES中是:Mapping映射(表结构-建表语句)、索引库(表本身)、文档(表数据)。本节笔者将带领大家完整上述概念的创建、使用。

1.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.2.索引和映射

索引(Index),就是相同类型的文档的集合。例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQL

Elasticsearch

说明

Table

Index

索引(index),就是文档的集合,类似数据库的表(table)

Row

Document

文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式

Column

Field

字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)

Schema

Mapping

Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)

SQL

DSL

DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考:链接

1.4.2.分词器

参考:链接

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
  • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
  • 数值:long、integer、short、byte、double、float、
  • 布尔:boolean
  • 日期:date
  • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{

   "age": 21,

   "weight": 52.1,

   "isMarried": false,

   "info": "程序员Java讲师",

   "email": "zy@hh.cn",

   "score": [99.1, 99.5, 98.9],

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
  • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
  • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1.创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称

{

 "mappings": {

   "properties": {

     "字段名":{

       "type": "text",

       "analyzer": "ik_smart"

     },

     "字段名2":{

       "type": "keyword",

       "index": "false"

     },

     "字段名3":{

       "properties": {

         "子字段": {

           "type": "keyword"

         }

       }

     },

     // ...略

   }

 }

}

示例:

PUT /demo

{

 "mappings": {

   "properties": {

     "info":{

       "type": "text",

       "analyzer": "ik_smart"

     },

     "email":{

       "type": "keyword",

       "index": "false"

     },

     "name":{

       "properties": {

         "firstName": {

           "type": "keyword"

         }

       }

     },

     // ... 略

   }

 }

}

2.2.2.查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

示例

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping

{

 "properties": {

   "新字段名":{

     "type": "integer"

   }

 }

}

示例

2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id

{

   "字段1": "值1",

   "字段2": "值2",

   "字段3": {

       "子属性1": "值3",

       "子属性2": "值4"

   },

   // ...

}

示例:

POST /heima/_doc/1

{

   "info": "程序员Java",

   "email": "zy@itcast.cn",

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

响应:

针对同一个index,其中version在每次写操作后都会+1(新增、修改、删除)

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据

DELETE /heima/_doc/1

结果:

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id

{

   "字段1": "值1",

   "字段2": "值2",

   // ... 略

}

示例:

PUT /heima/_doc/1

{

   "info": "黑马程序员高级Java讲师",

   "email": "zy@itcast.cn",

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

3.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id

{

   "doc": {

        "字段名": "新的值",

   }

}

示例:

POST /heima/_update/1

{

 "doc": {

   "email": "ZhaoYun@itcast.cn"

 }

}

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id   { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
  • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
  • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

4.RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

4.0.1.导入数据

首先导入提供的数据库数据:📎tb_hotel.sql

数据结构如下:

CREATE TABLE `tb_hotel` (

 `id` bigint(20) NOT NULL COMMENT '酒店id',

 `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',

 `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',

 `price` int(10) NOT NULL COMMENT '酒店价格;例:329',

 `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',

 `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',

 `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',

 `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',

 `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',

 `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',

 `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',

 `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.0.2.导入项目

然后导入提供的项目:📎hotel-demo.zip

项目结构如图:

4.0.3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel

{

 "mappings": {

   "properties": {

     "id": {

       "type": "keyword"

     },

     "name":{

       "type": "text",

       "analyzer": "ik_max_word",

       "copy_to": "all"

     },

     "address":{

       "type": "keyword",

       "index": false

     },

     "price":{

       "type": "integer"

     },

     "score":{

       "type": "integer"

     },

     "brand":{

       "type": "keyword",

       "copy_to": "all"

     },

     "city":{

       "type": "keyword",

       "copy_to": "all"

     },

     "starName":{

       "type": "keyword"

     },

     "business":{

       "type": "keyword"

     },

     "location":{

       "type": "geo_point"

     },

     "pic":{

       "type": "keyword",

       "index": false

     },

     "all":{

       "type": "text",

       "analyzer": "ik_max_word"

     }

   }

 }

}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:

copy_to说明:

4.0.4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>

   <groupId>org.elasticsearch.client</groupId>

   <artifactId>elasticsearch-rest-high-level-client</artifactId>

</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>

   <java.version>1.8</java.version>

   <elasticsearch.version>7.12.1</elasticsearch.version>

</properties>

3)初始化RestHighLevelClient,初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(

       HttpHost.create("http://192.168.150.101:9200")

));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;


import org.apache.http.HttpHost;

import org.elasticsearch.client.RestHighLevelClient;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;


import java.io.IOException;


public class HotelIndexTest {

   private RestHighLevelClient client;


   @BeforeEach

   void setUp() {

       this.client = new RestHighLevelClient(RestClient.builder(

               HttpHost.create("http://192.168.150.101:9200")

       ));

   }


   @AfterEach

   void tearDown() throws IOException {

       this.client.close();

   }

}

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.1.2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;


public class HotelConstants {

   public static final String MAPPING_TEMPLATE = "{\n" +

           "  \"mappings\": {\n" +

           "    \"properties\": {\n" +

           "      \"id\": {\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"name\":{\n" +

           "        \"type\": \"text\",\n" +

           "        \"analyzer\": \"ik_max_word\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"address\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"index\": false\n" +

           "      },\n" +

           "      \"price\":{\n" +

           "        \"type\": \"integer\"\n" +

           "      },\n" +

           "      \"score\":{\n" +

           "        \"type\": \"integer\"\n" +

           "      },\n" +

           "      \"brand\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"city\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"starName\":{\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"business\":{\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"location\":{\n" +

           "        \"type\": \"geo_point\"\n" +

           "      },\n" +

           "      \"pic\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"index\": false\n" +

           "      },\n" +

           "      \"all\":{\n" +

           "        \"type\": \"text\",\n" +

           "        \"analyzer\": \"ik_max_word\"\n" +

           "      }\n" +

           "    }\n" +

           "  }\n" +

           "}";

}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test

void createHotelIndex() throws IOException {

   // 1.创建Request对象

   CreateIndexRequest request = new CreateIndexRequest("hotel");

   // 2.准备请求的参数:DSL语句

   request.source(MAPPING_TEMPLATE, XContentType.JSON);

   // 3.发送请求

   client.indices().create(request, RequestOptions.DEFAULT);

}

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test

void testDeleteHotelIndex() throws IOException {

   // 1.创建Request对象

   DeleteIndexRequest request = new DeleteIndexRequest("hotel");

   // 2.发送请求

   client.indices().delete(request, RequestOptions.DEFAULT);

}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法

@Test

void testExistsHotelIndex() throws IOException {

   // 1.创建Request对象

   GetIndexRequest request = new GetIndexRequest("hotel");

   // 2.发送请求

   boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);

   // 3.输出

   System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");

}

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5.RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

package cn.itcast.hotel;


import cn.itcast.hotel.pojo.Hotel;

import cn.itcast.hotel.service.IHotelService;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;


import java.io.IOException;

import java.util.List;


@SpringBootTest

public class HotelDocumentTest {

   @Autowired

   private IHotelService hotelService;


   private RestHighLevelClient client;


   @BeforeEach

   void setUp() {

       this.client = new RestHighLevelClient(RestClient.builder(

               HttpHost.create("http://192.168.150.101:9200")

       ));

   }


   @AfterEach

   void tearDown() throws IOException {

       this.client.close();

   }

}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data

@TableName("tb_hotel")

public class Hotel {

   @TableId(type = IdType.INPUT)

   private Long id;

   private String name;

   private String address;

   private Integer price;

   private Integer score;

   private String brand;

   private String city;

   private String starName;

   private String business;

   private String longitude;

   private String latitude;

   private String pic;

}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;


import lombok.Data;

import lombok.NoArgsConstructor;


@Data

@NoArgsConstructor

public class HotelDoc {

   private Long id;

   private String name;

   private String address;

   private Integer price;

   private Integer score;

   private String brand;

   private String city;

   private String starName;

   private String business;

   private String location;

   private String pic;


   public HotelDoc(Hotel hotel) {

       this.id = hotel.getId();

       this.name = hotel.getName();

       this.address = hotel.getAddress();

       this.price = hotel.getPrice();

       this.score = hotel.getScore();

       this.brand = hotel.getBrand();

       this.city = hotel.getCity();

       this.starName = hotel.getStarName();

       this.business = hotel.getBusiness();

       this.location = hotel.getLatitude() + ", " + hotel.getLongitude();

       this.pic = hotel.getPic();

   }

}

5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1

{

   "name": "Jack",

   "age": 21

}

对应的java代码如图

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testAddDocument() throws IOException {

   // 1.根据id查询酒店数据

   Hotel hotel = hotelService.getById(61083L);

   // 2.转换为文档类型

   HotelDoc hotelDoc = new HotelDoc(hotel);

   // 3.将HotelDoc转json

   String json = JSON.toJSONString(hotelDoc);


   // 1.准备Request对象

   IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());

   // 2.准备Json文档

   request.source(json, XContentType.JSON);

   // 3.发送请求

   client.index(request, RequestOptions.DEFAULT);

}

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testGetDocumentById() throws IOException {

   // 1.准备Request

   GetRequest request = new GetRequest("hotel", "61082");

   // 2.发送请求,得到响应

   GetResponse response = client.get(request, RequestOptions.DEFAULT);

   // 3.解析响应结果

   String json = response.getSourceAsString();


   HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);

   System.out.println(hotelDoc);

}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testDeleteDocument() throws IOException {

   // 1.准备Request

   DeleteRequest request = new DeleteRequest("hotel", "61083");

   // 2.发送请求

   client.delete(request, RequestOptions.DEFAULT);

}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testUpdateDocument() throws IOException {

   // 1.准备Request

   UpdateRequest request = new UpdateRequest("hotel", "61083");

   // 2.准备请求参数

   request.doc(

       "price", "952",

       "starName", "四钻"

   );

   // 3.发送请求

   client.update(request, RequestOptions.DEFAULT);

}

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testBulkRequest() throws IOException {

   // 批量查询酒店数据

   List<Hotel> hotels = hotelService.list();


   // 1.创建Request

   BulkRequest request = new BulkRequest();

   // 2.准备参数,添加多个新增的Request

   for (Hotel hotel : hotels) {

       // 2.1.转换为文档类型HotelDoc

       HotelDoc hotelDoc = new HotelDoc(hotel);

       // 2.2.创建新增文档的Request对象

       request.add(new IndexRequest("hotel")

                   .id(hotelDoc.getId().toString())

                   .source(JSON.toJSONString(hotelDoc), XContentType.JSON));

   }

   // 3.发送请求

   client.bulk(request, RequestOptions.DEFAULT);

}

通过指令查询:GET /hotel/_search

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
4月前
|
存储 JSON 数据库
Elasticsearch 分布式架构解析
【9月更文第2天】Elasticsearch 是一个分布式的搜索和分析引擎,以其高可扩展性和实时性著称。它基于 Lucene 开发,但提供了更高级别的抽象,使得开发者能够轻松地构建复杂的搜索应用。本文将深入探讨 Elasticsearch 的分布式存储和检索机制,解释其背后的原理及其优势。
298 5
|
5月前
|
存储 监控 负载均衡
检索服务elasticsearch分布式结构
【8月更文挑战第22天】
56 3
|
2月前
|
存储 索引
Elasticsearch分布式架构
【11月更文挑战第2天】
40 1
|
4月前
|
自然语言处理 搜索推荐 数据库
高性能分布式搜索引擎Elasticsearch详解
高性能分布式搜索引擎Elasticsearch详解
103 4
高性能分布式搜索引擎Elasticsearch详解
|
3月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
39 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
3月前
|
开发框架 监控 搜索推荐
GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎
本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。
214 0
|
4月前
|
JSON 自然语言处理 算法
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
DSL查询文档、RestClient查询文档、全文检索查询、精准查询、复合查询、地理坐标查询、分页、排序、高亮、黑马旅游案例
|
4月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
5月前
|
SQL 分布式计算 MaxCompute
一种基于ODPS SQL的全局字典索引分布式计算思路
本文提供一种能充分利用分布式计算资源来计算全局字典索引的方法,以解决在大数据量下使用上诉方式导致所有数据被分发到单个reducer进行单机排序带来的性能瓶颈。
|
5月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
107 5