Python的多线程与多进程详解

简介: 全局解释器锁(GIL)导致了Python多线程无法利用多核CPU并发执行。引入GIL,是为了解决多线程之间数据完整性和状态同步的问题,简化了Python对共享资源的管理;但是也降低了并发编程的性能。

Python并发支持
(1)多线程与多进程对比
image.png

(2)IO密集型与CPU密集型计算对比
image.png

(3)并发编程-常见问题
并发编程中,还有几个绕不开的话题:
使用Lock对资源加锁,防止并发冲突。
使用队列Queue可以实现线程或进程间通信,可以实现生产者-消费者模式
使用线程池或进程池,简化线程或者进程的提交、等待与获取结果。

Python速度慢的原因
在并发编程上,Python比C/C++、Java都慢。主要有以下原因:

解释性语言
1、边解释边执行
Python是动态类型的语言,需要边解释边执行。
C/C++编写完成之后,需要编译为直接可执行的机器码,机器码执行速度非常快。
2、变量的特性
再次就是Python中变量的类型,是不固定的。
它既可以是数字,随时可以切换为字符串或者列表。
这就需要随时检查变量数据类型,所以性能下降。

GIL(全局解释器锁)
全局解释器锁(GIL)导致了Python多线程无法利用多核CPU并发执行。
全局解释器锁(GIL:Global Interpreter Lock的缩写)。
image.png

GIL是Python解释器用于同步线程的一种机制,使得任何时刻仅有一个线程在执行;即便在多核CPU上,GIL的解释器也只允许同一时间执行一个线程。
最开始引入GIL,是为了解决多线程之间数据完整性和状态同步的问题,简化了Python对共享资源的管理;但是也降低了并发编程的性能。现在想要去除,却比较难了。

CPU密集型计算案例
CPU密集型计算

key = 100000000 * 100000
num_list = [random.randint(key, 10 * key) for i in range(1000)]

# 计算一个数是否是质数
def is_prime(num: int) -> bool:
    if num < 2:
        return False
    if num == 2:
        return True
    if num % 2 == 0:
        return False
    sqrt_num = int(math.floor(math.sqrt(num)))
    for i in range(3, sqrt_num + 1, 2):
        if num % i == 0:
            return False
    return True

这里定义一个判断质数的方法,判断1000个数(10万亿 ~ 100万亿之间的随机数)

三种方式对比
单线程、多线程、多进程处理这个CPU密集型计算;统计三种方法耗时。

单线程处理

def single_thread():

for num in num_list:
    is_prime(num)

多线程处理

def multi_threads():

with ThreadPoolExecutor() as pool:
    pool.map(is_prime, num_list)

多进程处理

def multi_process():

with ProcessPoolExecutor() as pool:
    pool.map(is_prime, num_list)

主执行方法

处理耗时统计

if name == "__main__":

start = time.time()
single_thread()
end = time.time()
print(f"single thread cost : {end - start}")

start = time.time()
multi_threads()
end = time.time()
print(f"multi threads cost : {end - start}")

start = time.time()
multi_process()
end = time.time()
print(f"multi process cost : {end - start}")

执行结果对比
single thread cost : 8.104012489318848
multi threads cost : 8.150990724563599
multi process cost : 1.85487961769104
结论:
对于CPU密集型任务,
(1)多线程可能因为线程切换,比单线程性能还差。
(2)多进程性能明显优于多线程。

相关文章
|
3天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
8天前
|
Linux 调度 C语言
深入理解操作系统:进程和线程的管理
【10月更文挑战第32天】本文旨在通过浅显易懂的语言和实际代码示例,带领读者探索操作系统中进程与线程的奥秘。我们将从基础知识出发,逐步深入到它们在操作系统中的实现和管理机制,最终通过实践加深对这一核心概念的理解。无论你是编程新手还是希望复习相关知识的资深开发者,这篇文章都将为你提供有价值的见解。
|
5天前
|
Java
java小知识—进程和线程
进程 进程是程序的一次执行过程,是系统运行的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如CPU时间,内存空间,文件,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程 线程,与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比
14 1
|
10天前
深入理解操作系统:进程与线程的管理
【10月更文挑战第30天】操作系统是计算机系统的核心,它负责管理计算机硬件资源,为应用程序提供基础服务。本文将深入探讨操作系统中进程和线程的概念、区别以及它们在资源管理中的作用。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程和线程的管理技巧。
23 2
|
12天前
|
调度 Python
深入浅出操作系统:进程与线程的奥秘
【10月更文挑战第28天】在数字世界的幕后,操作系统悄无声息地扮演着关键角色。本文将拨开迷雾,深入探讨操作系统中的两个基本概念——进程和线程。我们将通过生动的比喻和直观的解释,揭示它们之间的差异与联系,并展示如何在实际应用中灵活运用这些知识。准备好了吗?让我们开始这段揭秘之旅!
|
15天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
37 4
|
15天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
37 1
|
4月前
|
安全 Python
告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!
【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。
71 3
|
22天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
1月前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
29 3