python多线程爬取汽车数据

简介: python如何使用多线获取网站数据

最近两天,关于湖北购车最高补贴9万元超级大促销席卷朋友圈和社交平台,很多的消费者参加了这个大促销活动,很多4S店表示目前已经无法接单,连展车都卖掉了。

这一波由地方与车企一起策划的降价“大降价”呈现蔓延趋势。一场从新能源汽车开启,席卷燃油车的“降价潮”正在迅速袭来。多地发布政策礼包,意在精准拉动汽车消费,各个车企也开始降价,进入抢夺消费者的浪潮里。

这里我们可以通过python爬取汽车之家提供的数据,中国汽车销量,汽车销量查询,通过近几年汽车的销量数据来说明为什么今年汽车市场会出现大规模的降价。

本篇重点介绍下python爬虫部分的内容。项目实行步骤为:

1、确定需要爬取的界面

QQ图片20230309151337.png

2、根据页面能提供的内容确定爬取数据需求,中国汽车分厂商每月销售量

4、根据数据前端结构,确定需求,编写爬虫代码,经过简单的分析,网站有反爬机制

,所以这里我们可以通过python多线程采集网站,通过随机数控制保持多个页面使用相同代理IP去获取数据。

#! -*- encoding:utf-8 -*-
import requests
import random
import requests.adapters
import threading # 导入threading模块
# 要访问的目标页面
targetUrlList = [
    "https://https://www.autohome.com.cn/",
    "https://httpbin.org/headers",
    "https://httpbin.org/user-agent",
]
proxyHost = "t.16yun.cn"
proxyPort = "31111"
# 代理验证信息
proxyUser = "16DUXINQ"
proxyPass = "235487"
proxyMeta = f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}"
# 设置 http和https访问都是用HTTP代理
proxies = {
    "http": proxyMeta,
    "https": proxyMeta,
}
# 设置IP切换头
tunnel = random.randint(1, 10000)
headers = {"Proxy-Tunnel": str(tunnel)}
class HTTPAdapter(requests.adapters.HTTPAdapter):
    def proxy_headers(self, proxy):
        headers = super(HTTPAdapter, self).proxy_headers(proxy)
        if hasattr(self, 'tunnel'):
            headers['Proxy-Tunnel'] = self.tunnel
        return headers
# 定义一个函数,用于访问一个目标网址
def visit_url(url, i, j):
    with requests.session() as s: # 使用with语句管理会话
        a = HTTPAdapter()
        # 设置IP切换头
        a.tunnel = tunnel
        s.mount('https://', a)
        r = s.get(url, proxies=proxies)
        print(f"第{i+1}次访问,第{j+1}个网址,结果如下:") # 使用f-string格式化输出
        print(r.text)
# 访问三次网站,使用相同的tunnel标志,均能够保持相同的外网IP
for i in range(3):
    # 创建一个空的线程列表
    threads = []
    for j, url in enumerate(targetUrlList): # 使用enumerate函数遍历列表
        # 创建一个线程,传入目标网址,当前次数和索引
        t = threading.Thread(target=visit_url, args=(url, i, j))
        # 将线程添加到线程列表
        threads.append(t)
        # 启动线程
        t.start()
    # 等待所有线程结束
    for t in threads:
        t.join()

最后关于爬取数据,数据清洗,数据分析我们放到下一篇文章再讲述。

相关文章
|
1月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1109 1
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
369 0
|
1月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
2月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
1月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
232 0
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

热门文章

最新文章

推荐镜像

更多