《python机器学习从入门到高级》分类算法实现:上(含详细代码)

简介: 《python机器学习从入门到高级》分类算法实现:上(含详细代码)

《python机器学习从入门到高级》分类算法:(上)

  • ✨本文收录于《python机器学习从入门到高级》专栏,此专栏主要记录如何使用python实现机器学习模型,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

本专栏主要从==代码角度==介绍如何使用python实现机器学习算法,想要了解具体机器学习理论的小伙伴,可以看我的这个专栏:统计学习方法

我们在之前的文章已经介绍了机器学习的一些基础概念,当拿到一个数据之后如何处理、如何评估一个模型、以及如何对模型调参等。接下来,我们正式开始学习如何实现机器学习的一些算法。
回归和==分类==是机器学习的两大最基本的问题,对于==分类算法==的详细理论部分。大家可以参考我这篇文章统计学习方法之分类算法详解
本文主要从python代码的角度来实现分类算法。

# 导入相关库
import sklearn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
AI 代码解读

🌳1. 数据准备

下面我们以mnist数据集为例进行演示,这是一组由美国人口普查局的高中生和雇员手写的70000个数字图像。每个图像都用数字表示。也是分类问题非常经典的一个数据集

# 导入mnist数据集
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
mnist.keys()
AI 代码解读
dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])


AI 代码解读

其中data是我们输入的特征,target0-9的数字

X, y = mnist["data"], mnist["target"]
X.shape,y.shape
AI 代码解读
((70000, 784), (70000,))


AI 代码解读

可以看出一共有70000图像,其中X一共有784个特征,这是因为图像是28×28的,每个特征是0-255之间的。下面我们通过imshow()函数将其进行还原

%matplotlib inline
import matplotlib as mpl
digit = X[0]
digit_image = digit.reshape((28, 28))#还原成28×28
plt.imshow(digit_image, cmap=mpl.cm.binary)
plt.axis("off")
plt.savefig("some_digit_plot")
plt.show()
AI 代码解读


png

从我们人类角度来看,我们很容易辨别它是5,我们要做的是,当给机器一张图片时,它能辨别出正确的数字吗?我们来看看y的值

y[0]
AI 代码解读
'5'


AI 代码解读

我们要实现的就是,给我们一张图片,不难发现这是一个==多分类任务==,下面我们正式进入模型建立,首先将数据集划分为==训练集和测试集==,这里简单的将前60000个划分为训练集,后10000个为测试集,具体代码如下

y = y.astype(np.uint8)#将y转换成整数
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
AI 代码解读

🌴2.简单二元分类实现

在实现多分类任务之前,我们先从一个简单的问题考虑,现在假设我只想知道给我一张图片,它是否是7(我最喜欢的数字)。这个时候就是一个简单的二分类问题,首先我们要将我们的目标变量进行转变,具体代码如下

y_train_7 = (y_train == 7)
y_test_7 = (y_test == 7)
AI 代码解读

现在,我们选择一个分类器并对其进行训练。我们先使用==SGD==(随机梯度下降)分类器

from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=123)#设置random_state为了结果的重复性
sgd_clf.fit(X_train, y_train_7)
AI 代码解读
SGDClassifier(random_state=123)


AI 代码解读

训练好模型之后我们可以进行预测,以第一张图片为例,我们预测一下它是否是7(很显然我们知道不是)

sgd_clf.predict(X[0].reshape((1,-1)))
AI 代码解读
array([False])


AI 代码解读

可以看出判断正确了,在之前我们讨论了==模型评估==的方法,详细介绍看这篇文章:Python机器学习从入门到高级:模型评估和选择(含详细代码)
下面演示如何用代码实现各个评估指标

🌵3.模型评估

我们根据分类评估指标来看看SGD分类器效果

🌾3.1 准确率

from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_7, cv=3, scoring="accuracy")
AI 代码解读
array([0.97565, 0.97655, 0.963  ])


AI 代码解读

🌿3.2 混淆矩阵

y_train_pred = sgd_clf.predict(X_train)
AI 代码解读
from sklearn.metrics import confusion_matrix
confusion_matrix(y_train_7, y_train_pred)
AI 代码解读
array([[53304,   431],
       [  550,  5715]], dtype=int64)


AI 代码解读

☘️3.3 召回率和精确度

from sklearn.metrics import precision_score, recall_score

print('precision:',precision_score(y_train_7, y_train_pred))
print('recall:',recall_score(y_train_7,y_train_pred))
AI 代码解读
precision: 0.929873088187439
recall: 0.9122106943335994


AI 代码解读

下面要用的matplotlib,想了解matplotlib可以看这篇文章:Python数据可视化大杀器之地阶技法:matplotlib(含详细代码)

🍁3.4 ROC曲线

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_7, y_scores)
plt.plot(fpr, tpr, linewidth=2)
plt.plot([0, 1], [0, 1], 'k--') 
plt.axis([0, 1, 0, 1])                                   
plt.xlabel('False Positive Rate (Fall-Out)', fontsize=16) 
plt.ylabel('True Positive Rate (Recall)', fontsize=16)    
plt.grid(True)                  
AI 代码解读


png

本章的介绍到此介绍,下一章介绍==分类算法(下):如何完成多分类任务==

🎄推荐文章

🎉统计学习方法之分类算法详解
Python数据可视化大杀器之地阶技法:matplotlib(含详细代码)
🎉Python机器学习从入门到高级:模型评估和选择(含详细代码)

目录
打赏
0
0
0
0
11
分享
相关文章
|
16天前
|
Python字符串格式化利器:f-strings入门指南
Python字符串格式化利器:f-strings入门指南
126 80
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。
105 5
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
52 0
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
117 11
200行python代码实现从Bigram模型到LLM
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
123 14
从零开始200行python代码实现LLM
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
83 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
410 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
103 1
把Postman调试脚本秒变Python采集代码的三大技巧
揭秘Python的__init__.py:从入门到精通的包管理艺术
__init__.py是Python包管理中的核心文件,既是包的身份标识,也是模块化设计的关键。本文从其历史演进、核心功能(如初始化、模块曝光控制和延迟加载)、高级应用场景(如兼容性适配、类型提示和插件架构)到最佳实践与常见陷阱,全面解析了__init__.py的作用与使用技巧。通过合理设计,开发者可构建优雅高效的包结构,助力Python代码质量提升。
161 10
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
257 0

推荐镜像

更多
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等