Python机器学习从入门到高级:快速处理文本(含代码)

简介: Python机器学习从入门到高级:快速处理文本(含代码)

Python机器学习:文本处理

最近小伙伴问我有什么刷题网站推荐,在这里推荐一下牛客网,里面包含各种面经题库,全是免费的题库,可以全方面提升你的职业竞争力,提升编程实战技巧,赶快来和我一起刷题吧!牛客网链接|python篇
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏
@ TOC

🍁1. 清洗文本

对一些非结构化的文本数据进行基本的清洗

  • strip
  • split
  • replace
# 创建文本
text_data = ['   Interrobang. By Aishwarya Henriette   ',
             'Parking And goding. by karl fautier',
             '   Today is the night. by jarek prakash    ']
# 去除文本两端的空格
stripwhitespace = [string.strip() for string in text_data]
stripwhitespace
['Interrobang. By Aishwarya Henriette',
 'Parking And goding. by karl fautier',
 'Today is the night. by jarek prakash']



# 删除句号
remove_periods = [string.replace('.','') for string in text_data]
remove_periods
['   Interrobang By Aishwarya Henriette   ',
 'Parking And goding by karl fautier',
 '   Today is the night by jarek prakash    ']



# 创建函数
def capitalizer(string):
    return string.upper()
[capitalizer(string) for string in remove_periods]
['   INTERROBANG BY AISHWARYA HENRIETTE   ',
 'PARKING AND GODING BY KARL FAUTIER',
 '   TODAY IS THE NIGHT BY JAREK PRAKASH    ']



# 使用正则表达式
import re
def replace_letters_with_x(string):
    return re.sub(r'[a-zA-Z]','x',string)
[replace_letters_with_x(string) for string in remove_periods]
['   xxxxxxxxxxx xx xxxxxxxxx xxxxxxxxx   ',
 'xxxxxxx xxx xxxxxx xx xxxx xxxxxxx',
 '   xxxxx xx xxx xxxxx xx xxxxx xxxxxxx    ']


🍂2. 解析并清洗HTML

#使用beautiful soup 对html进行解析
from bs4 import BeautifulSoup
# 创建html代码
html = """
        <div class='full_name'><span style='font-weight:bold'>
        Masege Azra"
    
    """
# 创建soup对象
soup = BeautifulSoup(html, 'lxml')
soup.find('div')
<div class="full_name"><span style="font-weight:bold">
        Masege Azra"
    
    </span></div>


🍃3. 移除标点

import unicodedata
import sys
text_data = ['Hi!!!! I. love. This. Song....',
             '10000% Agree!!!! #LoveIT',
             'Right??!!']
# 创建一个标点符号字典
punctuation = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P'))
[string.translate(punctuation) for string in text_data]
['Hi I love This Song', '10000 Agree LoveIT', 'Right']


🌍4. 文本分词

这里介绍一下jieba库

import jieba
# 创建文本
string = 'The science of study is the technology of tomorrow'
seg = jieba.lcut(string)
print(seg)
['The', ' ', 'science', ' ', 'of', ' ', 'study', ' ', 'is', ' ', 'the', ' ', 'technology', ' ', 'of', ' ', 'tomorrow']


当然,本文只是介绍了在数据清洗中的一些最基本的文本处理方法,后续还会介绍目前NLP的一些主流方法和代码。

最近小伙伴问我有什么刷题网站推荐,在这里推荐一下牛客网,里面包含各种面经题库,全是免费的题库,可以全方面提升你的职业竞争力,提升编程实战技巧,赶快来和我一起刷题吧!牛客网链接|python篇

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

相关文章
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
87 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
61 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
83 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
46 0
|
8月前
|
人工智能 Java Python
python入门(二)安装第三方包
python入门(二)安装第三方包
111 1
|
3月前
|
机器学习/深度学习 Python
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
本篇将详细介绍如何在Mac系统上安装和配置Anaconda,如何创建虚拟环境,并学习如何使用 `pip` 和 `conda` 管理Python包,直到成功运行第一个Python程序。通过本篇,您将学会如何高效地使用Anaconda创建和管理虚拟环境,并使用Python开发。
134 4
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
|
3月前
|
IDE 开发工具 iOS开发
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
本篇将详细介绍如何在Mac系统上安装Python,并配置Python开发环境。内容涵盖Python的安装、pip包管理工具的配置与国内镜像源替换、安装与配置PyCharm开发工具,以及通过PyCharm编写并运行第一个Python程序。通过本篇的学习,用户将完成Python开发环境的搭建,为后续的Python编程工作打下基础。
383 2
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置