Python机器学习从入门到高级:手把手教你处理分类型数据(含详细代码)

简介: Python机器学习从入门到高级:手把手教你处理分类型数据(含详细代码)

python机器学习:分类型数据处理**

  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

在构建模型时,我们经常遇见一些分类型数据,此时需要对这些分类型数据进行相应转换。本章介绍如何使用python处理分类型数据,首先分类型数据主要包括以下两种。

  • 本身没有顺序的称为nominal,也称为==名义变量==
    例如性别
  • 本身具有顺序的称为ordinal,也称为==定序变量==
    例如年纪:老年、中年、青年

如果我们不对分类型数据进行处理的话,那么无法将它们直接构建模型,在机器学习中,处理分类型数据最常用的方法是进行one-hot(独热编码)

💮1. 对名义变量进行转换

使用sklearnLabelBinarizer对这些分类数据进行编码,具体代码如下

# 导入相关库
import numpy as np
from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer
# 创建模拟数据
feature = np.array([['Texas'],
                    ['California'],
                    ['Texas'],
                    ['Delaware'],
                    ['Texas']])
# 创建one-hot编码器 也就是将其以矩阵0 1 来表示,
one_hot = LabelBinarizer()
classes = one_hot.fit_transform(feature)
classes
array([[0, 0, 1],
       [1, 0, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1]])


如上图所示,001表示Texas,010表示Delaware

使用classes_查看分类

one_hot.classes_
array(['California', 'Delaware', 'Texas'], dtype='<U10')



# 对one_hot 进行逆编码转换
one_hot.inverse_transform(classes)
array(['Texas', 'California', 'Texas', 'Delaware', 'Texas'], dtype='<U10')



import pandas as pd

使用pandas来进行one-hot编码

pd.get_dummies(feature[:,0])
California Delaware Texas
0 0 0 1
1 1 0 0
2 0 0 1
3 0 1 0
4 0 0 1
# sklearn 还可以处理每个观测值有多个分类的情况
multiclass_feature = [('Texas', 'Florida'),
                      ('California', 'Alabama'),
                      ('Texas', 'Florida'),
                      ('Delware', 'Florida'),
                      ('Texas', 'Alabama')]
one_hot_multiclass = MultiLabelBinarizer()
one_hot_multiclass.fit_transform(multiclass_feature)
array([[0, 0, 0, 1, 1],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 1, 1],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 1]])



one_hot_multiclass.classes_
array(['Alabama', 'California', 'Delware', 'Florida', 'Texas'],
      dtype=object)


🏵️2. 对ordinal分类特征编码

对于定序类变量,这些变量的取值是有一定顺序的,此时,我们需要指定对应的编码

dataframe = pd.DataFrame({'Score': ['Low', 'Low', 'Medium', 'Medium', 'High']})
scale_mapper = {'Low':1,
                'Medium':2,
                'High':3}
dataframe['Score'].replace(scale_mapper)
0    1
1    1
2    2
3    2
4    3
Name: Score, dtype: int64

其中:

  • 1-Low
  • 2-Medium
  • 3-High

🌺3. 对特征字典编码

有的时候我们还会遇见一些特征字典,例如颜色的RGB值,如下所示

data_dict = [{'Red':2, 'Blue':4},
             {'Red':2, 'Blue':3},
             {'Red':1, 'Yellow':2},
             {'Red':2, 'Yellow':2}]
data_dict
[{'Red': 2, 'Blue': 4},
 {'Red': 2, 'Blue': 3},
 {'Red': 1, 'Yellow': 2},
 {'Red': 2, 'Yellow': 2}]


此时的data_dict就是一个特征字典,下面我们看如何使用DictVectorizer将其进行编码

from sklearn.feature_extraction import DictVectorizer
dictvectorizer = DictVectorizer(sparse=False)# 默认的是会返回稀疏矩阵,此时由于矩阵比较小,我们设置强制返回稠密矩阵
features = dictvectorizer.fit_transform(data_dict)
features
array([[4., 2., 0.],
       [3., 2., 0.],
       [0., 1., 2.],
       [0., 2., 2.]])


第一列表示Blue的值,第二列表示Red的值,第三列表示Yellow的值

feature_names = dictvectorizer.get_feature_names()
feature_names
['Blue', 'Red', 'Yellow']

pd.DataFrame(features, columns=feature_names)
Blue Red Yellow
0 4.0 2.0 0.0
1 3.0 2.0 0.0
2 0.0 1.0 2.0
3 0.0 2.0 2.0

🌻4. 填充缺失的分类值

==方法一==:
当分类特征中包含缺失值,我们可以用预测值来填充,下面演示如何使用使用KNN分类器来进行填充

# 导入相关库
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 导入数据
X = np.array([[0, 2.10, 1.45],
              [1, 1.18, 1.33],
              [0, 1.22, 1.27],
              [1, -0.21, -1.19]])
# 第一列为nan
X_with_nan = np.array([[np.nan, 0.87, 1.31],
                       [np.nan, -0.67, -0.22]])
# 训练knn分类器
clf = KNeighborsClassifier(3, weights='distance')
train_model = clf.fit(X[:, 1:], X[:,0])
# 预测缺失值的分类
imputed_values = train_model.predict(X_with_nan[:,1:])
# 将所预测的分类与原来的特征连接
X_with_imputed = np.hstack((imputed_values.reshape((2,1)), X_with_nan[:,1:]))
X_with_imputed
array([[ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])



np.vstack((X, X_with_imputed))
array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])


这种方法是通过将其他特征作为特征矩阵来进行预测,从而求得缺失值

==方法二==:选取特征中出现最多的特征值来进行填充,使用simpleimputer

# 导入相关库
from sklearn.impute import SimpleImputer
X_complete = np.vstack((X,X_with_imputed))
imputet = SimpleImputer(strategy='most_frequent')
imputet.fit_transform(X_complete)
array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])


方法二在处理很多数据的时候可能会方便一些,方法一使用KNN预测的效果更好

🌼5. 处理不均衡分类

  • 收集更多的数据
  • 改变评估模型的衡量标准
  • 使用嵌入分类权重参数的模型

使用鸢(yuan)尾花 数据集 ,默认每种类型都有五十个数据,这里我们删除山鸢尾的四十个数据

# 首先导入相关数据
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier#随机森林分类器
# 加载iris数据集
iris = load_iris()
features = iris.data
target = iris.target
target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])



# 移除前40个features
features = features[40:, :]
target = target[40:]
# 转换成一个二元来观察观测值是否为0
target = np.where((target == 0), 0, 1)
target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

对于这种不均衡的数据,我们可以选择在训练时对其进行加权处理,我们在这里使用随机森林分类,通过weights参数来进行处理权重

# 创建权重
weights = {0: .9, 1:0.1}
# 创建一个带权重的随机森林分类器
RandomForestClassifier(class_weight=weights)
RandomForestClassifier(class_weight={0: 0.9, 1: 0.1})


还可以传入balanced参数,自动创建于分类的频数成反比的权重

# 训练一个带均衡分类权重的随机森林分类器
RandomForestClassifier(class_weight='balanced')
RandomForestClassifier(class_weight='balanced')


🌷6. 重采样

处理不均衡分类数据的另一个思路是使用重采样方法,对占多数的使用下采样,对占少数部分的使用上采样,在下采样中,从占多数的分类中取出观测值,创建一个数量与占少数的分类相同的子集

下面对鸢尾花数据进行操作

# 给每个分类的观察值标签
i_class0 = np.where(target==0)[0]
i_class1 = np.where(target==1)[0]
# 计算每个分类值的观察值数量
n_class0 = len(i_class0)
n_class1 = len(i_class1)
# 对于每个分类为0的观察值,从分类为一的数据进行无放回的随机采样
i_class1_downsampled = np.random.choice(i_class1, size=n_class0, replace=False)
np.hstack((target[i_class0], target[i_class1_downsampled]))
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])



# 将分类为0和分类为1的特征矩阵连接起来
np.vstack((features[i_class0,:], features[i_class1_downsampled, :]))[0:5]
array([[5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4]])


本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!
相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
26天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
65 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
6天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
1月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
40 7
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
45 5
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
79 3
|
1月前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
下一篇
开通oss服务