- 🌸个人主页:JoJo的数据分析历险记
- 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
- 💌如果文章对你有帮助,欢迎关注、点赞、收藏、订阅专栏
@
TOC
在上一篇文章中,介绍了如何使用python
导入数据,导入数据后的第二步往往就是数据清洗,下面我们来看看如何使用pandas
进行数据清洗工作
导入相关库
import pandas as pd
dataframe = pd.read_csv(r'C:/Users/DELL/data-science-learning/python数据分析笔记/探索性数据分析/train.csv')
dataframe.head(5)
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
🥇1.总览数据
dataframe.shape
(891, 12)
dataframe.describe()
|
PassengerId |
Survived |
Pclass |
Age |
SibSp |
Parch |
Fare |
count |
891.000000 |
891.000000 |
891.000000 |
714.000000 |
891.000000 |
891.000000 |
891.000000 |
mean |
446.000000 |
0.383838 |
2.308642 |
29.699118 |
0.523008 |
0.381594 |
32.204208 |
std |
257.353842 |
0.486592 |
0.836071 |
14.526497 |
1.102743 |
0.806057 |
49.693429 |
min |
1.000000 |
0.000000 |
1.000000 |
0.420000 |
0.000000 |
0.000000 |
0.000000 |
25% |
223.500000 |
0.000000 |
2.000000 |
20.125000 |
0.000000 |
0.000000 |
7.910400 |
50% |
446.000000 |
0.000000 |
3.000000 |
28.000000 |
0.000000 |
0.000000 |
14.454200 |
75% |
668.500000 |
1.000000 |
3.000000 |
38.000000 |
1.000000 |
0.000000 |
31.000000 |
max |
891.000000 |
1.000000 |
3.000000 |
80.000000 |
8.000000 |
6.000000 |
512.329200 |
🥈2.筛选数据
dataframe[(dataframe['Sex'] == 'female') & (dataframe['Age']>=60)]
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
275 |
276 |
1 |
1 |
Andrews, Miss. Kornelia Theodosia |
female |
63.0 |
1 |
0 |
13502 |
77.9583 |
D7 |
S |
366 |
367 |
1 |
1 |
Warren, Mrs. Frank Manley (Anna Sophia Atkinson) |
female |
60.0 |
1 |
0 |
110813 |
75.2500 |
D37 |
C |
483 |
484 |
1 |
3 |
Turkula, Mrs. (Hedwig) |
female |
63.0 |
0 |
0 |
4134 |
9.5875 |
NaN |
S |
829 |
830 |
1 |
1 |
Stone, Mrs. George Nelson (Martha Evelyn) |
female |
62.0 |
0 |
0 |
113572 |
80.0000 |
B28 |
NaN |
可以看出,一共有四名年龄大于60岁的女性乘客
🥉3.替换数据
- 将
female
换成woman
,将male
换成man
dataframe['Sex'].replace(['female','male'],['woman','man']).head(5)
0 man
1 woman
2 woman
3 woman
4 man
Name: Sex, dtype: object
🏅4.更改列名
dataframe.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
dtype='object')
|
PassengerId |
Survived |
Passenger Class |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
dataframe.rename(columns={'Pclass':'Passenger Class','Sex':'Gender'}).head()
|
PassengerId |
Survived |
Passenger Class |
Name |
Gender |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
🥇5.查找唯一值
在pandas
中,我们可以使用unique()
查找唯一值
# 查找唯一值
dataframe['Sex'].unique()
array(['male', 'female'], dtype=object)
# 显示唯一值出现的个数
dataframe['Sex'].value_counts()
male 577
female 314
Name: Sex, dtype: int64
# 查找类型票的数量
dataframe['Pclass'].value_counts()
3 491
1 216
2 184
Name: Pclass, dtype: int64
# 查找唯一值的种类
dataframe['Pclass'].nunique()
3
🥈6.查找缺失值
# 查找空数据
dataframe[dataframe['Age'].isnull()].head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
5 |
6 |
0 |
3 |
Moran, Mr. James |
male |
NaN |
0 |
0 |
330877 |
8.4583 |
NaN |
Q |
17 |
18 |
1 |
2 |
Williams, Mr. Charles Eugene |
male |
NaN |
0 |
0 |
244373 |
13.0000 |
NaN |
S |
19 |
20 |
1 |
3 |
Masselmani, Mrs. Fatima |
female |
NaN |
0 |
0 |
2649 |
7.2250 |
NaN |
C |
26 |
27 |
0 |
3 |
Emir, Mr. Farred Chehab |
male |
NaN |
0 |
0 |
2631 |
7.2250 |
NaN |
C |
28 |
29 |
1 |
3 |
O'Dwyer, Miss. Ellen "Nellie" |
female |
NaN |
0 |
0 |
330959 |
7.8792 |
NaN |
Q |
pandas
没有NaN
如果想要处理的话必须导入numpy
包
import numpy as np
dataframe['Sex'].replace('male',np.nan).head()
0 NaN
1 female
2 female
3 female
4 NaN
Name: Sex, dtype: object
🥉7.删除列或行
# 删除一列,采用drop方法,并传入参数axis
dataframe.drop('Age',axis=1).head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
#删除行
dataframe.drop(1)
# 删除重复行 使用subset参数指明要删除的列
dataframe.drop_duplicates(subset='Sex').head()
|
Name |
PClass |
Age |
Sex |
Survived |
SexCode |
0 |
Allen, Miss Elisabeth Walton |
1st |
29.0 |
female |
1 |
1 |
2 |
Allison, Mr Hudson Joshua Creighton |
1st |
30.0 |
male |
0 |
0 |
🏅8. groupby分组
==思路一==,将所有男性和女性的条件进行选取分别计算
man = dataframe[dataframe['Sex']=='male']
woman = dataframe[dataframe['Sex']=='female']
print(man.mean())
print(woman.mean())
Age 31.014338
Survived 0.166863
SexCode 0.000000
dtype: float64
Age 29.396424
Survived 0.666667
SexCode 1.000000
dtype: float64
==思路二==,用groupby方法简化
dataframe.groupby('Sex').mean()
|
Age |
Survived |
SexCode |
Sex |
|
|
|
female |
29.396424 |
0.666667 |
1.0 |
male |
31.014338 |
0.166863 |
0.0 |
# 按行分组,计算行数
dataframe.groupby('Sex')['Name'].count()
Sex
female 462
male 851
Name: Name, dtype: int64
dataframe.groupby(['Sex','Survived']).mean()
|
|
PassengerId |
Pclass |
Age |
SibSp |
Parch |
Fare |
Sex |
Survived |
|
|
|
|
|
|
female |
0 |
434.851852 |
2.851852 |
25.046875 |
1.209877 |
1.037037 |
23.024385 |
1 |
429.699571 |
1.918455 |
28.847716 |
0.515021 |
0.515021 |
51.938573 |
male |
0 |
449.121795 |
2.476496 |
31.618056 |
0.440171 |
0.207265 |
21.960993 |
1 |
475.724771 |
2.018349 |
27.276022 |
0.385321 |
0.357798 |
40.821484 |
🥇9.按照时间段来进行分组
# 创建时期范围
time_index = pd.date_range('06/06/2017', periods=100000, freq='30S') # periods表示有多少数据,freq表示步长
dataframe = pd.DataFrame(index=time_index)
# 创建一个随机变量
dataframe['Sale_Amout'] = np.random.randint(1, 10, 100000)
# resample 参数,按周对行分组,计算每一周的总和
dataframe.resample('W').sum()
|
Sale_Amout |
2017-06-11 |
86292 |
2017-06-18 |
100359 |
2017-06-25 |
100907 |
2017-07-02 |
100868 |
2017-07-09 |
100522 |
2017-07-16 |
10478 |
# 使用resample可以按一组时间间隔来进行分组,然后计算每一个时间组的某个统计量
dataframe.resample('2W').mean()
|
Sale_Amout |
2017-06-11 |
4.993750 |
2017-06-25 |
4.991716 |
2017-07-09 |
4.994792 |
2017-07-23 |
5.037500 |
dataframe.resample('M').count()
|
Sale_Amout |
2017-06-30 |
72000 |
2017-07-31 |
28000 |
# resample默认是以最后一个数据作 使用label参数可以进行调整
dataframe.resample('M', label='left').count()
|
Sale_Amout |
2017-05-31 |
72000 |
2017-06-30 |
28000 |
🥈10.遍历一个列的数据
dataframe = pd.read_csv(url)
# 以大写的形势打印前两行的名字
for name in dataframe['Name'][0:2]:
print(name.upper())
ALLEN, MISS ELISABETH WALTON
ALLISON, MISS HELEN LORAINE
🥉11.对一列的所有元素应用某个函数
def uppercase(x):
return x.upper()
dataframe['Name'].apply(uppercase)[0:2]
0 ALLEN, MISS ELISABETH WALTON
1 ALLISON, MISS HELEN LORAINE
Name: Name, dtype: object
🏅12. pandas高级函数
dataframe.groupby('Sex').apply(lambda x:x.count())
|
Name |
PClass |
Age |
Sex |
Survived |
SexCode |
Sex |
|
|
|
|
|
|
female |
462 |
462 |
288 |
462 |
462 |
462 |
male |
851 |
851 |
468 |
851 |
851 |
851 |
通过联合使用groupby
和apply
,我们就能计算自定义的统计量
例如上面我们发现age
、cabin
具有大量的缺失值
🥇13. 连接多个Dataframe
data_a = {'id':['1', '2', '3'],
'first': ['Alex', 'Amy', 'Allen'],
'last': ['Anderson', 'Ackerman', 'Ali']}
dataframe_a = pd.DataFrame(data_a, columns=['id','first', 'last'])
data_b = {'id':['4', '5', '6'],
'first': ['Billy', 'Brian', 'Bran'],
'last': ['Bonder', 'Black', 'Balwner']}
dataframe_b = pd.DataFrame(data_b, columns=['id','first', 'last'])
pd.concat([dataframe_a, dataframe_b], axis=0)#在行的方向进行
|
id |
first |
last |
0 |
1 |
Alex |
Anderson |
1 |
2 |
Amy |
Ackerman |
2 |
3 |
Allen |
Ali |
0 |
4 |
Billy |
Bonder |
1 |
5 |
Brian |
Black |
2 |
6 |
Bran |
Balwner |
pd.concat([dataframe_a, dataframe_b], axis=1)#在列的方向进行
|
id |
first |
last |
id |
first |
last |
0 |
1 |
Alex |
Anderson |
4 |
Billy |
Bonder |
1 |
2 |
Amy |
Ackerman |
5 |
Brian |
Black |
2 |
3 |
Allen |
Ali |
6 |
Bran |
Balwner |
# 也可以用append方法进行添加
c = pd.Series([10, 'Chris', 'Chillon'], index=['id','first','last'])
dataframe.append(c, ignore_index=True)#如果c原来有名字忽略
|
id |
first |
last |
0 |
1 |
Alex |
Anderson |
1 |
2 |
Amy |
Ackerman |
2 |
3 |
Allen |
Ali |
3 |
10 |
Chris |
Chillon |