Python机器学习入门到高级:数据清洗(含详细代码)

简介: Python机器学习入门到高级:数据清洗(含详细代码)
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎关注、点赞、收藏、订阅专栏
@ TOC

在上一篇文章中,介绍了如何使用python导入数据,导入数据后的第二步往往就是数据清洗,下面我们来看看如何使用pandas进行数据清洗工作

导入相关库

import pandas as pd

dataframe = pd.read_csv(r'C:/Users/DELL/data-science-learning/python数据分析笔记/探索性数据分析/train.csv')
dataframe.head(5)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

🥇1.总览数据

  • 查看数据维度
dataframe.shape
(891, 12)


  • 描述性统计分析
dataframe.describe()
PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

🥈2.筛选数据

  • 过滤所有女性和年龄大于60岁的乘客
dataframe[(dataframe['Sex'] == 'female') & (dataframe['Age']>=60)]
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
275 276 1 1 Andrews, Miss. Kornelia Theodosia female 63.0 1 0 13502 77.9583 D7 S
366 367 1 1 Warren, Mrs. Frank Manley (Anna Sophia Atkinson) female 60.0 1 0 110813 75.2500 D37 C
483 484 1 3 Turkula, Mrs. (Hedwig) female 63.0 0 0 4134 9.5875 NaN S
829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62.0 0 0 113572 80.0000 B28 NaN

可以看出,一共有四名年龄大于60岁的女性乘客

🥉3.替换数据

  • female换成woman,将male换成man
dataframe['Sex'].replace(['female','male'],['woman','man']).head(5)
0      man
1    woman
2    woman
3    woman
4      man
Name: Sex, dtype: object






🏅4.更改列名

  • 查看所有列名
dataframe.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
  • 重命名列

PassengerId Survived Passenger Class Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

dataframe.rename(columns={'Pclass':'Passenger Class','Sex':'Gender'}).head()
PassengerId Survived Passenger Class Name Gender Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

🥇5.查找唯一值

pandas中,我们可以使用unique()查找唯一值

# 查找唯一值
dataframe['Sex'].unique()
array(['male', 'female'], dtype=object)



# 显示唯一值出现的个数
dataframe['Sex'].value_counts()
male      577
female    314
Name: Sex, dtype: int64



# 查找类型票的数量
dataframe['Pclass'].value_counts()
3    491
1    216
2    184
Name: Pclass, dtype: int64





# 查找唯一值的种类
dataframe['Pclass'].nunique()
3

🥈6.查找缺失值

# 查找空数据
dataframe[dataframe['Age'].isnull()].head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
17 18 1 2 Williams, Mr. Charles Eugene male NaN 0 0 244373 13.0000 NaN S
19 20 1 3 Masselmani, Mrs. Fatima female NaN 0 0 2649 7.2250 NaN C
26 27 0 3 Emir, Mr. Farred Chehab male NaN 0 0 2631 7.2250 NaN C
28 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female NaN 0 0 330959 7.8792 NaN Q

pandas没有NaN 如果想要处理的话必须导入numpy

import numpy as np
dataframe['Sex'].replace('male',np.nan).head()
0       NaN
1    female
2    female
3    female
4       NaN
Name: Sex, dtype: object

🥉7.删除列或行

# 删除一列,采用drop方法,并传入参数axis
dataframe.drop('Age',axis=1).head()
PassengerId Survived Pclass Name Sex SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 0 0 373450 8.0500 NaN S
#删除行
dataframe.drop(1)
# 删除重复行 使用subset参数指明要删除的列
dataframe.drop_duplicates(subset='Sex').head()
Name PClass Age Sex Survived SexCode
0 Allen, Miss Elisabeth Walton 1st 29.0 female 1 1
2 Allison, Mr Hudson Joshua Creighton 1st 30.0 male 0 0

🏅8. groupby分组

  • 计算男性和女性的平均值

==思路一==,将所有男性和女性的条件进行选取分别计算

man = dataframe[dataframe['Sex']=='male']
woman = dataframe[dataframe['Sex']=='female']
print(man.mean())
print(woman.mean())
Age         31.014338
Survived     0.166863
SexCode      0.000000
dtype: float64
Age         29.396424
Survived     0.666667
SexCode      1.000000
dtype: float64

==思路二==,用groupby方法简化


dataframe.groupby('Sex').mean()
Age Survived SexCode
Sex
female 29.396424 0.666667 1.0
male 31.014338 0.166863 0.0
# 按行分组,计算行数
dataframe.groupby('Sex')['Name'].count()
Sex
female    462
male      851
Name: Name, dtype: int64



dataframe.groupby(['Sex','Survived']).mean()
PassengerId Pclass Age SibSp Parch Fare
Sex Survived
female 0 434.851852 2.851852 25.046875 1.209877 1.037037 23.024385
1 429.699571 1.918455 28.847716 0.515021 0.515021 51.938573
male 0 449.121795 2.476496 31.618056 0.440171 0.207265 21.960993
1 475.724771 2.018349 27.276022 0.385321 0.357798 40.821484

🥇9.按照时间段来进行分组

  • 使用resample参数来进行取样本
# 创建时期范围
time_index = pd.date_range('06/06/2017', periods=100000, freq='30S') # periods表示有多少数据,freq表示步长
dataframe = pd.DataFrame(index=time_index)
# 创建一个随机变量
dataframe['Sale_Amout'] = np.random.randint(1, 10, 100000)
# resample 参数,按周对行分组,计算每一周的总和
dataframe.resample('W').sum()
Sale_Amout
2017-06-11 86292
2017-06-18 100359
2017-06-25 100907
2017-07-02 100868
2017-07-09 100522
2017-07-16 10478
# 使用resample可以按一组时间间隔来进行分组,然后计算每一个时间组的某个统计量
dataframe.resample('2W').mean()
Sale_Amout
2017-06-11 4.993750
2017-06-25 4.991716
2017-07-09 4.994792
2017-07-23 5.037500
dataframe.resample('M').count()
Sale_Amout
2017-06-30 72000
2017-07-31 28000
# resample默认是以最后一个数据作 使用label参数可以进行调整
dataframe.resample('M', label='left').count()
Sale_Amout
2017-05-31 72000
2017-06-30 28000

🥈10.遍历一个列的数据

dataframe = pd.read_csv(url)
# 以大写的形势打印前两行的名字
for name in dataframe['Name'][0:2]:
    print(name.upper())
ALLEN, MISS ELISABETH WALTON
ALLISON, MISS HELEN LORAINE

🥉11.对一列的所有元素应用某个函数

def uppercase(x):
    return x.upper()
dataframe['Name'].apply(uppercase)[0:2]
0    ALLEN, MISS ELISABETH WALTON
1     ALLISON, MISS HELEN LORAINE
Name: Name, dtype: object


🏅12. pandas高级函数

dataframe.groupby('Sex').apply(lambda x:x.count())
Name PClass Age Sex Survived SexCode
Sex
female 462 462 288 462 462 462
male 851 851 468 851 851 851

通过联合使用groupbyapply,我们就能计算自定义的统计量
例如上面我们发现agecabin具有大量的缺失值

🥇13. 连接多个Dataframe

data_a = {'id':['1', '2', '3'],
          'first': ['Alex', 'Amy', 'Allen'],
          'last': ['Anderson', 'Ackerman', 'Ali']}
dataframe_a = pd.DataFrame(data_a, columns=['id','first', 'last'])
data_b = {'id':['4', '5', '6'],
          'first': ['Billy', 'Brian', 'Bran'],
          'last': ['Bonder', 'Black', 'Balwner']}
dataframe_b = pd.DataFrame(data_b, columns=['id','first', 'last'])
pd.concat([dataframe_a, dataframe_b], axis=0)#在行的方向进行
id first last
0 1 Alex Anderson
1 2 Amy Ackerman
2 3 Allen Ali
0 4 Billy Bonder
1 5 Brian Black
2 6 Bran Balwner
pd.concat([dataframe_a, dataframe_b], axis=1)#在列的方向进行
id first last id first last
0 1 Alex Anderson 4 Billy Bonder
1 2 Amy Ackerman 5 Brian Black
2 3 Allen Ali 6 Bran Balwner
# 也可以用append方法进行添加
c = pd.Series([10, 'Chris', 'Chillon'], index=['id','first','last'])
dataframe.append(c, ignore_index=True)#如果c原来有名字忽略
id first last
0 1 Alex Anderson
1 2 Amy Ackerman
2 3 Allen Ali
3 10 Chris Chillon
相关文章
|
26天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
65 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
数据采集 数据挖掘 数据格式
使用Python进行数据清洗的实用指南
在数据分析的世界里,"垃圾进,垃圾出"这句老话再贴切不过。数据清洗作为数据分析前的关键步骤,直接影响着分析结果的准确性与可靠性。本文将通过浅显易懂的语言和实际代码示例,带你掌握如何使用Python及其强大的库进行数据清洗,从缺失值处理到异常值检测,再到数据格式转换和重复数据删除,让你的数据准备工作变得既高效又专业。
104 2
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
111 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
61 2
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
133 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
53 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
73 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
下一篇
开通oss服务