AI绘画数字藏品开发详情丨AI绘画数字藏品系统开发技术分析及源码案例

简介:   Every change in the ownership of digital collections can be recorded on the blockchain,greatly promoting the transaction and circulation of digital collections.Blockchain technology can confirm that digital collections are easy to transfer and can be traded;

  Every change in the ownership of digital collections can be recorded on the blockchain,greatly promoting the transaction and circulation of digital collections.Blockchain technology can confirm that digital collections are easy to transfer and can be traded;

Through blockchain technology,the creators,consumers and participants of digital collections will be more closely connected and become a more active and influential platform for creation,communication and trading.

  UniswapV3PoolDeployer合约主要提供deploy函数来创建UniswapV3Pool智能合约并设置两个token信息,交易费用信息和tick的步长信息,完整代码如下:

  //SPDX-License-Identifier:BUSL-1.1

  pragma solidity=0.7.6;

  import'./interfaces/IUniswapV3PoolDeployer.sol';

  import'./UniswapV3Pool.sol';

  contract UniswapV3PoolDeployer is IUniswapV3PoolDeployer{

  struct Parameters{

  address factory;

  address token0;

  address token1;

  uint24 fee;

  int24 tickSpacing;

  }

  ///inheritdoc IUniswapV3PoolDeployer

  Parameters public override parameters;

  ///dev Deploys a pool with the given parameters by transiently setting the parameters storage slot and then

  ///clearing it after deploying the pool.

  ///param factory The contract address of the Uniswap V3 factory

  ///param token0 The first token of the pool by address sort order

  ///param token1 The second token of the pool by address sort order

  ///param fee The fee collected upon every swap in the pool,denominated in hundredths of a bip

  ///param tickSpacing The spacing between usable ticks

  function deploy(

  address factory,

  address token0,

  address token1,

  uint24 fee,

  int24 tickSpacing

  )internal returns(address pool){

  parameters=Parameters({factory:factory,token0:token0,token1:token1,fee:fee,tickSpacing:tickSpacing});

  pool=address(new UniswapV3Pool{salt:keccak256(abi.encode(token0,token1,fee))}());

  delete parameters;

  }

  }

相关文章
|
12天前
|
人工智能 小程序
【一步步开发AI运动小程序】十五、AI运动识别中,如何判断人体站位的远近?
【云智AI运动识别小程序插件】提供人体、运动及姿态检测的AI能力,无需后台支持,具有快速、体验好、易集成等特点。本文介绍如何利用插件判断人体与摄像头的远近,确保人体图像在帧内的比例适中,以优化识别效果。通过`whole`检测规则,分别实现人体过近和过远的判断,并给出相应示例代码。
|
9天前
|
存储 人工智能 自然语言处理
ChatMCP:基于 MCP 协议开发的 AI 聊天客户端,支持多语言和自动化安装 MCP 服务器
ChatMCP 是一款基于模型上下文协议(MCP)的 AI 聊天客户端,支持多语言和自动化安装。它能够与多种大型语言模型(LLM)如 OpenAI、Claude 和 OLLama 等进行交互,具备自动化安装 MCP 服务器、SSE 传输支持、自动选择服务器、聊天记录管理等功能。
75 15
ChatMCP:基于 MCP 协议开发的 AI 聊天客户端,支持多语言和自动化安装 MCP 服务器
|
6天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
|
11天前
|
人工智能 小程序 UED
【一步步开发AI运动小程序】十六、AI运动识别中,如何判断人体站位?
【云智AI运动识别小程序插件】提供人体、运动及姿态检测的AI能力,本地引擎无需后台支持,具备快速、体验好、易集成等优势。本文介绍如何利用插件的`camera-view`功能,通过检测人体站位视角(前、后、左、右),确保运动时的最佳识别率和用户体验。代码示例展示了如何实现视角检查,确保用户正或背对摄像头,为后续运动检测打下基础。
|
7天前
|
人工智能 小程序 数据处理
uni-app开发AI康复锻炼小程序,帮助肢体受伤患者康复!
近期,多家康复机构咨询AI运动识别插件是否适用于肢力运动受限患者的康复锻炼。本文介绍该插件在康复锻炼中的应用场景,包括康复运动指导、运动记录、恢复程度记录及过程监测。插件集成了人体检测、姿态识别等功能,支持微信小程序平台,使用便捷,安全可靠,帮助康复治疗更加高效精准。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
58 10
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
6天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
12天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营

热门文章

最新文章