量化合约及合约量化机器人系统开发(开发详细)丨量化合约及合约量化机器人开发源码及策略

简介:   量化交易策略大体上可以分为两类,一类是判断趋势进行高抛低吸的策略,即趋势策略;另一类是消除系统性的风险获取相对稳健收益的策略,即策略。

  量化交易策略大体上可以分为两类,一类是判断趋势进行高抛低吸的策略,即趋势策略;另一类是消除系统性的风险获取相对稳健收益的策略,即策略。

  自动交易机器人在云服务器上24小时运行。初始化设置参数之后,机器人将按照策略进行自动交易。达到设定条件自动买入或者卖出,无须长时间盯盘。

  机器人内置多种交易策略,满足不同的类型。

  void Calibration::_initMaps(){

  _featureInfo.clear();

  _opInfo.clear();

  _tensorMap.clear();

  //run mnn once,initialize featureMap,opInfo map

  //MNN提供了每个op计算的callback,一个计算前一个是计算后

  //计算前的callback完成的工作是为input tensor创建TensorStatistic对象;op info的填充op->input,output的映射

  MNN::TensorCallBackWithInfo before=&{

  _opInfo[info->name()].first=nTensors;

  if(Helper::gNeedFeatureOp.find(info->type())!=Helper::gNeedFeatureOp.end()){

  for(auto t:nTensors){开发需求及案例:MrsFu123

  if(_featureInfo.find(t)==_featureInfo.end()){

  _featureInfo[t]=std::shared_ptr(

  new TensorStatistic(t,_featureQuantizeMethod,info->name()+"__input"));

  }

  }

  }

  return false;

  };

  //计算后的callback完成的工作是为output tensor创建TensorStatistic对象;op info的填充op->input,output的映射

  MNN::TensorCallBackWithInfo after=[this](const std::vector<MNN::Tensor*>&nTensors,

  const MNN::OperatorInfo*info){

  _opInfo[info->name()].second=nTensors;

  if(Helper::gNeedFeatureOp.find(info->type())!=Helper::gNeedFeatureOp.end()){

  for(auto t:nTensors){

  if(_featureInfo.find(t)==_featureInfo.end()){

  _featureInfo[t]=

  std::shared_ptr(new TensorStatistic(t,_featureQuantizeMethod,info->name()));

  }

  }

  }

  return true;

  };

  _interpreter->runSessionWithCallBackInfo(_session,before,after);

  //遍历op,由op的<input/output index,input/output>加入到tensorMap

  for(auto&op:_originaleModel->oplists){

  if(_opInfo.find(op->name)==_opInfo.end()){

  continue;

  }

  for(int i=0;iinputIndexes.size();++i){

  _tensorMap[op->inputIndexes]=_opInfo[op->name].first;

  }

  for(int i=0;ioutputIndexes.size();++i){

  _tensorMap[op->outputIndexes]=_opInfo[op->name].second;

  }

  }

  if(_featureQuantizeMethod=="KL"){

  //set the tensor-statistic method of input tensor as THRESHOLD_MAX

  auto inputTensorStatistic=_featureInfo.find(_inputTensor);

  if(inputTensorStatistic!=_featureInfo.end()){

  inputTensorStatistic->second->setThresholdMethod(THRESHOLD_MAX);

  }

  }

  }

相关文章
|
3月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
TsingtaoAI具身智能机器人开发套件及实训方案
该产品套件创新性地融合了先进大模型技术、深度相机与多轴协作机械臂技术,构建了一个功能强大、灵活易用的人机协作解决方案。其核心在于将智能决策、精准感知与高效执行完美结合,为高校实训领域的发展注入新动力。
447 10
|
8月前
|
人工智能 开发框架 机器人
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
4614 38
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
|
9月前
|
人工智能 自动驾驶 安全
Cosmos:英伟达生成式世界基础模型平台,加速自动驾驶与机器人开发
Cosmos 是英伟达推出的生成式世界基础模型平台,旨在加速物理人工智能系统的发展,特别是在自动驾驶和机器人领域。
765 15
Cosmos:英伟达生成式世界基础模型平台,加速自动驾驶与机器人开发
|
10月前
|
编解码 网络协议 机器人
顶顶通电话机器人开发接口对接大语言模型之实时流TTS对接介绍
大语言模型通常流式返回文字,若一次性TTS会导致严重延迟。通过标点断句或流TTS可实现低延迟的文本到语音转换。本文介绍了电话机器人接口适配流TTS的原理及技术点,包括FreeSWITCH通过WebSocket流TTS放音,以及推流协议和旁路流对接的详细说明。
754 1
|
11月前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
191 4
|
11月前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
430 0
|
1月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
101 1
|
7月前
|
人工智能 自然语言处理 机器人
9.9K star!大模型原生即时通信机器人平台,这个开源项目让AI对话更智能!
"😎高稳定、🧩支持插件、🦄多模态 - 大模型原生即时通信机器人平台"
215 0
|
5月前
|
弹性计算 自然语言处理 Ubuntu
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人

热门文章

最新文章