HDFS的特点、三个服务、架构

简介: 一、高可靠性:hadoop一般都在成千的计算机集群之上,且可以搭建hadoop的高可靠集群,及内部容错功能优秀。二、高扩展性:hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。三、高效性:hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。四、高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。#### 缺点:

你的点赞与评论是我最大的创作动力!

在这里插入图片描述

优点:

一、高可靠性:hadoop一般都在成千的计算机集群之上,且可以搭建hadoop的高可靠集群,及内部容错功能优秀。
二、高扩展性:hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
三、高效性:hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
四、高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

缺点:

一、不适合低延迟数据访问
二、无法高效存储大量小文件
三、不支持多用户写入及任意修改文件

HDFS三个服务

1.namenode (metadata 元数据)
2.secondary namenode
3.datanode

区分两个概念:

数据:数据内容
元数据:文件名称、大小、所属人 、地址

HDFS架构

NameNode
  • Namenode是一个中心服务器,单一节点(简化系统的设计和实现),负责管理文件系统的名字空间(namespase)以及客户端对文件的访问。
  • 文件操作:NameNode负责文件元数据的操作,DataNode负责处理文件内容的读写请求,跟文件内容相关的数据流不经过NameNode,只会询问它跟那个DataNode联系,否则NameNode会成为系统的瓶颈。
  • 副本存放在那些DataNode上由NameNode来控制,根据全局情况做出块放置决定,读取文件时NameNode尽量让用户先读取最近的副本,降低带块消耗和读取延时。
  • NameNode全权管理数据块的复制,它周期性地从集群中的每个Datanode接收心跳信号和块状态报告(Blockreport)。接收到心跳信号意味着该Datanode节点工作正常。块状态报告包含了一个该Datanode上所有数据块的列表。
DataNode
  • 一个数据块在DataNode是以文件存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
  • DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
  • 心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令,如复制块数据到另一台机器,或者删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
  • 集群运行中可以安全加入和退出一些机器。

HDFS文件权限

  • 与linux文件权限类似
  • r:read; w:write: x:execute, 权限x对于文件忽略,对于文件夹表示是否允许访问其内容。
  • 如果linux系统用户Bob使用hadoop命令创建一个文件,那么这个文件在HDFS中所有者就是Bob
  • HDFS的权限目的:阻止好人做错事,而不是阻止坏人做坏事。HDFS相信,你告诉我你是谁,我就认为你是谁。
目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
154 6
|
1月前
|
Cloud Native Java API
聊聊从单体到微服务架构服务演化过程
本文介绍了从单体应用到微服务再到云原生架构的演进过程。单体应用虽易于搭建和部署,但难以局部更新;面向服务架构(SOA)通过模块化和服务总线提升了组件复用性和分布式部署能力;微服务则进一步实现了服务的独立开发与部署,提高了灵活性;云原生架构则利用容器化、微服务和自动化工具,实现了应用在动态环境中的弹性扩展与高效管理。这一演进体现了软件架构向着更灵活、更高效的方向发展。
|
2月前
|
存储 Linux KVM
Proxmox VE (PVE) 主要架构和重要服务介绍
Proxmox VE (PVE) 是一款开源的虚拟化平台,它基于 KVM (Kernel-based Virtual Machine) 和 LXC (Linux Containers) 技术,支持虚拟机和容器的运行。PVE 还提供高可用集群管理、软件定义存储、备份和恢复以及网络管理等企业级功能。
1074 7
|
1月前
|
消息中间件 Kafka 数据库
微服务架构中,如何确保服务之间的数据一致性?
微服务架构中,如何确保服务之间的数据一致性?
|
12天前
|
存储 缓存 分布式计算
【赵渝强老师】基于RBF的HDFS联邦架构
最新版Hadoop实现了基于Router的联盟架构,增强了集群管理能力。Router将挂载表从客户端中分离,解决了ViewFS的问题。RBF架构包括Router和State Store两个模块,其中Router作为代理服务,负责解析ViewFS并转发请求至正确子集群,State Store则维护子集群的状态和挂载表信息。
|
12天前
|
存储 分布式计算 负载均衡
【赵渝强老师】基于ViewFS的HDFS联邦架构
本文介绍了HDFS联盟(Federation)的概念及其在大数据存储中的应用。HDFS联盟通过允许多个NameNode管理不同的命名空间,实现了负载均衡和NameNode的水平扩展。文章还详细解释了基于ViewFS的联盟架构,以及该方案的局限性。附带的视频进一步讲解了相关概念。
|
1月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
54 3
|
2月前
|
消息中间件 Kafka 数据库
微服务架构中,如何确保服务之间的数据一致性
微服务架构中,如何确保服务之间的数据一致性
|
2月前
|
编解码 Linux 开发工具
Linux平台x86_64|aarch64架构RTMP推送|轻量级RTSP服务模块集成说明
支持x64_64架构、aarch64架构(需要glibc-2.21及以上版本的Linux系统, 需要libX11.so.6, 需要GLib–2.0, 需安装 libstdc++.so.6.0.21、GLIBCXX_3.4.21、 CXXABI_1.3.9)。
|
10天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
下一篇
无影云桌面