今天必须推荐一个由百度飞桨开源的项目-PaddleClas,该 Repo 提供了全球首个完整开源通用图像识别系统。
不仅如此,作为视觉任务的坚实底座,PaddleClas还提供了 35 个系列,近 200 个预训练模型和性能评估,力求为工业界和学术界提供更高效便捷的开发工具,为开发者带来更流畅优质的使用体验,实现行业场景实现落地应用。
想要获取更多PaddleClas相关介绍及教程文档可前往⬇️:
地址: https://github.com/PaddlePaddle/PaddleClas
目前已经提供的应用方向包括::商品识别、车辆识别、LOGO识别、动漫人物识别等。
不仅如此,PaddleClas团队最近还提出了超强悍CPU级骨干网络PP-LCNet!速度提升2倍,超越目前所有SOTA算法!
算法速度优化遇到瓶颈,达不到要求?应用环境没有高性能硬件只有CPU?莫慌,这些开发者们的普遍痛点,今天老逛就来为万千开发者带来破局大法:针对CPU设备及加速库MKLDNN定制的骨干网络PP-LCNet!空口无凭,上图为证!
从上图我们可以看出,PP-LCNet在同样精度的情况下,速度远超当前所有的骨架网络,最多可以有2倍的性能优势!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的性能提升。
而这个PP-LCNet的论文发布和代码开源后,也着实引来了众多业界开发者的关注,各界大神把PP-LCNet应用在YOLO系列算法上也真实带来了极其可观的性能收益。
这时候是不是有小伙伴已经按耐不住也想直接上手试试了?!老逛识趣地赶紧送上开源代码的传送门 ⬇️ 大家一定要Star收藏以免走失,也给开源社区一些认可和鼓励。
地址:https://github.com/PaddlePaddle/PaddleClas
而这个PP-LCNet到底是如何设计,从而有这么好的性能的呢?下面小编就带大家来领略一下:
1. PP-LCNet核心技术解读
近年来,很多轻量级的骨干网络问世,各种NAS搜索出的网络尤其亮眼。但这些算法的优化都脱离了产业最常用的Intel CPU设备环境,加速能力也往往不合预期。百度飞桨图像分类套件PaddleClas基于这样的产业现状,针对Intel CPU及其加速库MKLDNN定制了独特的高性能骨干网络PP-LCNet。
比起其他的轻量级SOTA模型,该骨干网络可以在不增加推理时间的情况下,进一步提升模型的性能,最终大幅度超越现有的SOTA模型。