一名工程师对于深度学习的理解-神经网络基础ANN

简介: 在这个数据和算法的时代,也需要更加贴近算法。于是从一名工程师角度出发,希望通过几篇文章,将深度学习基础记录下来,同时也是对于自己学习的总结和积累。总体思路是ANN-CNN-DNN,中间想起来有什么忘记的,也会加番。

读书期间对于深度学习也有涉及,不过只是皮毛,在这个数据和算法的时代,也需要更加贴近算法。于是从一名工程师角度出发,希望通过几篇文章,将深度学习基础记录下来,同时也是对于自己学习的总结和积累。总体思路是ANN-CNN-DNN,中间想起来有什么忘记的,也会加番。

神经网络概述

image.png
这是一张典型的人工神经网络的图,图中的节点称为神经元,图共分为三层,第一层为输入层,第二层为隐藏层,第三层为输出层。输入层接受外部世界的输入,具像化为图像的像素值,实体的特征值等,输出层概率预测结果,具像化为该图像是人像,该实体为潜在商家。

神经元

image.png
一个神经元将多个输入及其权值统一为下层节点的一个输入。例如:
屏幕快照 2017-06-30 下午5.24.12.png
而神经元一般都使用sigmoid函数,至于为什么使用sigmoid函数,也是个很有探讨意义的问题,具体可以看这篇文章了解sigmoid的特性,http://www.tuicool.com/articles/uMraAb
屏幕快照 2017-06-30 下午5.37.56.png
屏幕快照 2017-06-30 下午5.39.36.png
其中,w表示权重向量,x表示输入向量,b为该节点的阈值。
那么下面问题就是如何选择合适的权重和阈值,构建出来合适的网络。

构建合适的网络

网络结构往往决定了算法复杂度和模型可调度,输出层主要由向量决定,输出层主要由预测类型决定,主要问题就在中间层数和节点数的选择上,节点数和层数越多意味着模型可调节性越强,预测结果的粒度越细,但同时也意味着计算复杂度越高。经验中间层一般选1-2层,节点数作为可调参数。

选择合适权重和阈值

首先,定义损失函数,损失函数的意义在于对于训练集评价预测结果和真实结果之间的差异
屏幕快照 2017-06-30 下午5.56.17.png
该损失函数其实是预测结果与真实结果之间的方差
我们希望通过调整权重w和阈值b的值来使预测结果和真实结果之间的差更小。相当于在一个解空间中寻找最优解。解法有很多,如梯度下降法,拟牛顿法等。

梯度下降法

屏幕快照 2017-06-30 下午6.01.49.png
通过上述公式可以看出,对于损失函数的变化可以描述为损失在每个维度v上的变化值之和,用向量表示为
屏幕快照 2017-06-30 下午6.05.24.png
为了是损失更小而不是更大,损失的变化应该小于0,于是取
屏幕快照 2017-06-30 下午6.04.58.png
则,损失的下降可以表示为
屏幕快照 2017-06-30 下午6.06.26.png

反向传播

反向传播其实是对于当一次预测结束后,评估每个参数对于预测结果误差的贡献,并对其进行调整,调整方法可以通过损失函数对于权值的求导得到:
屏幕快照 2017-06-30 下午6.21.14.png
通过多次迭代,获得损失函数的极小值。步长决定了函数的收敛速度。
小结下:
人工神经网络就好像一个在陌生的城市迷路的孩子,每走一步都对该步进行评估,计算其到达目的地的可能性,并逐渐走到目的地。人工神经网络比较重要的有三部分:
-1. 结构:层级网络
-2. 求解方法:梯度下降
-3. 求解思想:反向传播

下集:一名工程师对于深度学习的理解-卷积神经网络CNN

目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
195 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
6月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
326 68
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1155 55
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
602 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
5月前
|
机器学习/深度学习 算法 数据库
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
本项目基于GoogleNet深度学习网络与GEI步态能量图提取技术,实现高精度步态识别。采用CASI库训练模型,结合Inception模块多尺度特征提取与GEI图像能量整合,提升识别稳定性与准确率,适用于智能安防、身份验证等领域。
|
11月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
593 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
9月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
398 8
|
10月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
620 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

热门文章

最新文章