【文本分类】Convolutional Neural Networks for Sentence Classification

简介: 【文本分类】Convolutional Neural Networks for Sentence Classification

·摘要:

 本文作者将CNN引用到了NLP的文本分类任务中。

·参考文献:

 [1] Convolutional Neural Networks for Sentence Classification 论文链接:http://cn.arxiv.org/pdf/1408.5882.pdf

[1] 模型


  很基础的卷积神经网络模型。

image.png

算法流程:

  1)word2vec词嵌入

  将若干个文本中的所有词,进行无监督训练,得到词向量(word vectors)。对于每个文本,可以采用词向量加和、平均的方式表示。

  2)convolutional卷积

  卷积特征向量。

  3)pooling池化

  使用最大池化,抽取最重要的特征。

  4)全连接

  dropout规则化防止过拟合+ 全连接的softmax层多分类

[2] 模型参数


  这里,模型根据词向量的不同分为四种:

  · CNN-rand,所有的词向量都随机初始化,并且作为模型参数进行训练。

  · CNN-static,即用word2vec预训练好的向量(Google News),在训练过程中不更新词向量,句中若有单词不在预训练好的词典中,则用随机数来代替。

  · CNN-non-static,根据不同的分类任务,进行相应的词向量预训练。

  · CNN-multichannel,两套词向量构造出的句子矩阵作为两个通道,在误差反向传播时,只更新一组词向量,保持另外一组不变。


[3] 实验结果


image.png

 在七组公开数据集中进行,证明了:

  · CNN在NLP文本分类中的有效性

  · 通过调参,也表明了word2vec的NLP中重要意义。

[4] 拓展


   1、入门了CNN,对torch、torchtext的使用有所掌握;

   2、详细了解了在基于深度学习的文本分类任务中embedding层的作用,请阅读文章:【文本分类】深入理解embedding层的模型、结构与文本表示

相关文章
|
机器学习/深度学习 搜索推荐 算法
Learning Disentangled Representations for Recommendation | NIPS 2019 论文解读
近年来随着深度学习的发展,推荐系统大量使用用户行为数据来构建用户/商品表征,并以此来构建召回、排序、重排等推荐系统中的标准模块。普通算法得到的用户商品表征本身,并不具备可解释性,而往往只能提供用户-商品之间的attention分作为商品粒度的用户兴趣。我们在这篇文章中,想仅通过用户行为,学习到本身就具备一定可解释性的解离化的用户商品表征,并试图利用这样的商品表征完成单语义可控的推荐任务。
23851 0
Learning Disentangled Representations for Recommendation | NIPS 2019 论文解读
|
4月前
|
机器学习/深度学习 PyTorch 语音技术
【文献学习】Conformer: Convolution-augmented Transformer for Speech Recognition
文章介绍了Conformer模型,这是一种结合了Transformer的自注意力机制和CNN卷积模块的混合模型,旨在提高语音识别任务的性能,通过自注意力捕捉全局上下文信息,同时利用卷积模块有效捕获局部特征。
123 0
|
7月前
|
Python
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
[Knowledge Distillation]论文分析:Distilling the Knowledge in a Neural Network
49 1
|
机器学习/深度学习 算法
Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter论文解读
该论文针对Twitter网站的信息进行关键词提取,因为Twitter网站文章/对话长度受到限制,现有的方法通常效果会急剧下降。作者使用循环神经网络(recurrent neural network,RNN)来解决这一问题,相对于其他方法取得了更好的效果。
122 0
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
321 0
|
机器学习/深度学习 存储 人工智能
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
109 0
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
|
机器学习/深度学习 大数据
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
158 0
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】A C-LSTM Neural Network for Text Classification
【文本分类】A C-LSTM Neural Network for Text Classification
165 0
【文本分类】A C-LSTM Neural Network for Text Classification
|
机器学习/深度学习 数据挖掘
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读
|
机器学习/深度学习 数据建模
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs
204 0
2_Recurrent Neural Networks (RNNs)循环神经网络 —Simple RNNs