题目:
由范围 [0,n] 内所有整数组成的 n + 1 个整数的排列序列可以表示为长度为 n 的字符串 s ,其中:
如果 perm[i] < perm[i + 1] ,那么 s[i] == ‘I’
如果 perm[i] > perm[i + 1] ,那么 s[i] == ‘D’
给定一个字符串 s ,重构排列 perm 并返回它。如果有多个有效排列perm,则返回其中 任何一个 。
示例 1:
输入:s = “IDID”
输出:[0,4,1,3,2]
示例 2:
输入:s = “III”
输出:[0,1,2,3]
示例 3:
输入:s = “DDI”
输出:[3,2,0,1]
提示:
1 <= s.length <= 105
s 只包含字符 “I” 或 “D”
解题代码:
func diStringMatch(s string) []int { var ans = make([]int, 0) h := len(s) l := 0 // 确定第一位是最高还是最低 for len(s) != 0 { u := s[0] long := 0 if len(ans) == 0 { if u == uint8('I') { ans = append(ans, l) long = strings.Index(s, "D") if long == -1 { long = len(s) } for i := 1; i <= long; i++ { ans = append(ans, h-long+i) } h -= long l ++ } else { ans = append(ans, h) long = strings.Index(s, "I") if long == -1 { long = len(s) } for i := 1; i <= long; i++ { ans = append(ans, l+long-i) } l += long h -- } } else { if u == uint8('I') { long = strings.Index(s, "D") if long == -1 { long = len(s) } for i := 1; i <= long; i++ { ans = append(ans, h-long+i) } h -= long } else { long = strings.Index(s, "I") if long == -1 { long = len(s) } for i := 1; i <= long; i++ { ans = append(ans, l+long-i) } l += long } } //fmt.Printf("s=%s,ans=%v\n",s,ans) s = s[long:] } return ans }
时间复杂度O(n*m),还行吧,在go组中执行用时击败100%,但是内存消耗过高。