人工智能在游戏中的应用与未来展望

简介: 人工智能在游戏中的应用与未来展望

人工智能在游戏中的应用与未来展望


摘要:人工智能是全球科技发展的一个热点, 其在多个领域都有突出的应用。本文主要介绍了人工智能在游戏中的三大应用,并对其发展趋势和前景进行了相关讨论。


关键词:人工智能,游戏,发展应用,前景


一.人工智能概述

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,在游戏中的应用也极为广泛,对玩家而言,游戏在玩法和开发上的拓展,能带来众多更有趣更精良的游戏;也会让体验变得更特别、更个性化、更令人回味。于整个产业来说,更多的创新和技术进步将推动产业的蓬勃发展,更加良性。


二.人工智能在游戏中的三类应用


1. AI智能游戏引擎

游戏AI引擎可以绕过算法,提供 “傻瓜式”的创作平台和工具:帮助开发者简化游戏制作流程,降低制作难度,塑造随机地图和创造NPC等等。目前主流的游戏AI引擎有三类:AI渲染引擎、NPC制作引擎和游戏创作引擎。


常见的有3D游戏需要提高游戏画面的表现力度, 不断提升3D图形技术的功能, 游戏画面在设计时除了重视美术设计质量外, 在游戏表现的各个环节需要编辑较多的数据, 这个程序员带来较大的挑战, 这些问题的解决归根到底是完善游戏引擎。游戏画面设计在引擎中一般采用层次的设计方式, 需要不断明确人工智能技术在各个环节的作用。游戏引擎的主要结构包括三个:高层接口、中层接口和低层接口, 具体来说,高层接口的作用是能够让用户使用人功智能技术调控中层接口,通过改变算法控制游戏中游戏角色的战术动作、攻击活动等进行操作,中层接口可以通过与底层接口相结合,控制底层接口中的动画和运动等变换速度快的画面,保证游戏中的角色能够做一些高难度的动作,为用户提供高质量的服务,底层接口的作用在于控制角色的动画与基本动作,并提供物理计算与3D渲染等功能,但是底层接口的功能只能操作角色的朝向和位置,不能进行跳跃的动作, 这些动作需要由中层接口完成。


2. 神经网络算法

要让NPC更聪明一点,目前这方面的AI解决方案主要有这四种:


有限状态机、蒙特卡洛决策树、神经网络、遗传算法。

在传统游戏中,最为广泛使用是有限状态自动机(FSM),这是一种专家型的预编程算法。与FSM相比,蒙特卡洛决策树(MCST) 会多步联想做决策,而非只就当前形势。这种多元化的行为能带来玩家更强大的个性化交互游戏体验,但其难度和成本也更大,且无学习能力。MCST模式下的NPC最大的缺陷在于学习能力。他们不能从玩家那里学习任何东西,不会根据玩家的习惯性操作做出相应的变化。


而人工神经网络(ANN)和遗传算法则可以解决机器学习的问题。**但是,神经网络下的NPC是“不可控的”( “非线性”和“非常定性”特征导致),这给游戏的运营与维护带来不少的风险, NPC的行为将在不断学习中变得难以预测,游戏后期的调试变得异常困难,有可能出现脱轨的问题。**另一种技术——遗传算法(Genetic Algorithm)创造了一个不可击败的敌人。**遗传算法是基于达尔文进化论提出的一种决策计算模型,计算机在模拟自然进化过程中寻求最优解。**体现在游戏上,NPC会根据以往的经验去优化策略,新一轮的进攻的“敌人”会接收“牺牲者”的意志,并针对玩家的过往策略逐个击破。这意味着越强大的玩家将面临越强大的敌人,并且没有尽头。主机游戏SHMUP中,游戏开发者就为玩家置入了运用遗传算法的敌人。他们让玩家反抗经过多代进化敌人的AI,当这一代又被击败时,遗传算法对AI进行排名并使用它们创造新一代的敌人来对抗玩家。在著名进化策略类游戏孢子和怪物系列都在遗传算法上有所突破。


3. AI操作系统

人工智能操作系统的理论前身为20世纪60年代末由斯坦福大学提出的机器人操作系统 ,应具有通用操作系统所具备的所有功能,并且包括语音识别、机器视觉、执行器系统、和认知行为系统 。在游戏中,相对于游戏引擎和算法开发方向而言,它可以直接识别玩家操作,使游戏产业第一次从间接的数字控制转向更自然的模拟控制。人工智能在游戏中的运用甚至帮助现实世界的进步。因为游戏能够为现实世界提供准确数据和测试平台,例如赛车游戏为自动驾驶提供数据支持等等。


三.对人工智能游戏的未来展望


在过去的20年里,AI在游戏中取得了显着的进步。 对于今天的游戏开发者来说,创造一个高效的A.I. 系统与创造优质游戏和美妙的图像同样重要。 每个工作室都开始为A.I.分配一个专门的编程团队。 在游戏开发的早期阶段设计游戏。 他们花费更多的资源和时间来建立多样化,称职和表现良好的非玩家角色(NPC)。 更多的开发人员使用高品质的A.I. 设计使他们的游戏在竞争日益激烈的市场中脱颖而出。


理想的目标是让玩家始终沉浸在游戏中。NPC应该让人觉得是活生生会呼吸的人,而且这种错觉在游戏中不会以任何方式被打破。人类的行为很有趣,像对话这种微妙的互动行为,在未来AI可能会实现。如果能在诸如此类的互动上有所突破,那么游戏中更多的部分将有更强的互动性。说不定会产生全新类型的游戏。


四.总结


通过游戏展我们可以看到游戏AI正在向更高的质量,更适应玩家的需求,给玩家带来非凡体验的方向迅猛发展。也许我们所期待的、理想中的、极大拟人化的游戏AI将会很快得以实现,并且给我们的生活增添更多的快乐与色彩。而游戏AI也将为人类在人工智能方面的研究上添上非常重要的一笔!

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
31 0
|
18天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
24 0
|
9天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
4天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
66 10
|
11天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
44 9
|
14天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
17天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
36 2
|
21天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在医疗领域的应用与挑战####
本文探讨了人工智能(AI)技术在现代医疗领域的应用及其面临的挑战。通过分析AI在疾病诊断、治疗方案优化和患者管理等方面的具体案例,阐述了AI技术如何提高医疗服务的效率和准确性。同时,本文也讨论了AI技术在实际应用中遇到的伦理、隐私和数据安全等问题,并提出了相应的解决策略。 ####
29 0
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####