自定义 Dataset
尽管 PyG 已经包含许多有用的数据集,我们也可以通过继承torch_geometric.data.Dataset使用自己的数据集。提供 2 种不同的Dataset:
InMemoryDataset:使用这个Dataset会一次性把数据全部加载到内存中。
Dataset: 使用这个Dataset每次加载一个数据到内存中,比较常用。
我们需要在自定义的Dataset的初始化方法中传入数据存放的路径,然后 PyG 会在这个路径下再划分 2 个文件夹:
raw_dir: 存放原始数据的路径,一般是 csv、mat 等格式
processed_dir: 存放处理后的数据,一般是 pt 格式 ( 由我们重写process()方法实现)。
Transforms
transforms在计算机视觉领域是一种很常见的数据增强。PyG 有自己的transforms,输出是Data类型,输出也是Data类型。可以使用torch_geometric.transforms.Compose封装一系列的transforms。我们以 ShapeNet 数据集 (包含 17000 个 point clouds,每个 point 分类为 16 个类别的其中一个) 为例,我们可以使用transforms从 point clouds 生成最近邻图:
import torch_geometric.transforms as T from torch_geometric.datasets import ShapeNet dataset = ShapeNet(root='/tmp/ShapeNet', categories=['Airplane'], pre_transform=T.KNNGraph(k=6)) # dataset[0]: Data(edge_index=[2, 15108], pos=[2518, 3], y=[2518])
还可以通过transform在一定范围内随机平移每个点,增加坐标上的扰动,做数据增强:
import torch_geometric.transforms as T from torch_geometric.datasets import ShapeNet dataset = ShapeNet(root='/tmp/ShapeNet', categories=['Airplane'], pre_transform=T.KNNGraph(k=6), transform=T.RandomTranslate(0.01)) # dataset[0]: Data(edge_index=[2, 15108], pos=[2518, 3], y=[2518])
模型训练
这里只是展示一个简单的 GCN 模型构造和训练过程,没有用到Dataset和DataLoader。
我们将使用一个简单的 GCN 层,并在 Cora 数据集上实验。有关 GCN 的更多内容,请查看**这篇博客**。
我们首先加载数据集:
from torch_geometric.datasets import Planetoid dataset = Planetoid(root='/tmp/Cora', name='Cora')
然后定义 2 层的 GCN:
import torch import torch.nn.functional as F from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_node_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1)
然后训练 200 个 epochs:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Net().to(device) data = dataset[0].to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) model.train() for epoch in range(200): optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step()
最后在测试集上验证了模型的准确率:
model.eval() _, pred = model(data).max(dim=1) correct = float (pred[data.test_mask].eq(data.y[data.test_mask]).sum().item()) acc = correct / data.test_mask.sum().item() print('Accuracy: {:.4f}'.format(acc))
参考链接
PyG Documentation — pytorch_geometric 2.0.2 documentation (pytorch-geometric.readthedocs.io)