# Pytorch 中可以直接调用的Loss Functions总结:(三)

简介: # Pytorch 中可以直接调用的Loss Functions总结:(三)

COSINEEMBEDDINGLOSS


余弦相似度损失函数,用于判断输入的两个向量是否相似。 常用于非线性词向量学习以及半监督学习。


loss函数之CosineEmbeddingLoss,HingeEmbeddingLoss_ltochange的博客-CSDN博客_余弦相似度损失函数


MultiLabelMarginLoss


多分类合页损失函数(hinge loss),对于一个样本不是考虑样本输出与真实类别之间的误差,而是考虑对应真实类别与其他类别之间的误差


loss函数之MultiMarginLoss, MultiLabelMarginLoss_ltochange的博客-CSDN博客


使用:

loss = nn.MultiLabelMarginLoss()
x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])
# for target y, only consider labels 3 and 0, not after label -1
y = torch.LongTensor([[3, 0, -1, 1]])
loss(x, y)
# 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))


HuberLoss


回归损失函数:Huber Loss_Peanut_范的博客-CSDN博客_huber loss


一个损失函数,y是真实值,f(x)是预测值,δ是HuberLoss的参数,当预测偏差小于δ时,它采用平方误差,当预测偏差大于δ,采用线性误差。相比于最小二乘的线性回归,Huber Loss降低了对异常点的惩罚程度,是一种常用的robust regression的损失函数


SmoothL1Loss


创建一个条件,如果绝对元素误差低于 beta,则使用平方项,否则使用 L1 项。它对异常值的敏感度低于torch.nn.MSELoss,并且在某些情况下可以防止梯度爆炸(例如,参见Ross Girshick的论文Fast R-CNN)。


SoftMarginLoss


loss函数之SoftMarginLoss - 简书 (jianshu.com)


MultiLabelSoftMarginLoss


MultiLabelSoftMarginLoss函数_Coding-Prince的博客-CSDN博客_multilabelsoftmarginloss


MULTIMARGINLOSS


多分类合页损失函数(hinge loss),对于一个样本不是考虑样本输出与真实类别之间的误差,而是考虑对应真实类别与其他类别之间的误差


loss函数之MultiMarginLoss, MultiLabelMarginLoss_旺旺棒棒冰的博客-CSDN博客


使用:

loss = nn.MultiMarginLoss()
x = torch.tensor([[0.1, 0.2, 0.4, 0.8]])
y = torch.tensor([3])
loss(x, y)
# 0.25 * ((1-(0.8-0.1)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))


TripletMarginLoss


PyTorch TripletMarginLoss(三元损失)_zj134_的博客-CSDN博客_pytorch 三元组损失


TripletMarginWithDistanceLoss


loss函数之TripletMarginLoss与TripletMarginWithDistanceLoss_ltochange的博客-CSDN博客


nn.xx 与 nn.functional .xx区别:


参考回答:


作者:肥波喇齐

链接:https://www.zhihu.com/question/66782101/answer/579393790


我们经常看到,二者有很多相同的loss函数,他们使用时有什么区别呢?


两者的相同之处:


nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv2d和nn.functional.conv2d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout,。。。。。;

运行效率也是近乎相同。

nn.functional.xxx是函数接口,而nn.Xxx是nn.functional.xxx的类封装,并且**nn.Xxx都继承于一个共同祖先nn.Module。**这一点导致nn.Xxx除了具有nn.functional.xxx功能之外,内部附带了nn.Module相关的属性和方法,例如train(), eval(),load_state_dict, state_dict 等。


什么时候使用nn.functional.xxx,什么时候使用nn.Xxx?


这个问题依赖于你要解决你问题的复杂度和个人风格喜好。在nn.Xxx不能满足你的功能需求时,nn.functional.xxx是更佳的选择,因为nn.functional.xxx更加的灵活(更加接近底层),你可以在其基础上定义出自己想要的功能。


个人偏向于在能使用nn.Xxx情况下尽量使用,不行再换nn.functional.xxx ,感觉这样更能显示出网络的层次关系,也更加的纯粹(所有layer和model本身都是Module,一种和谐统一的感觉)。


一点导致nn.Xxx除了具有nn.functional.xxx功能之外,内部附带了nn.Module相关的属性和方法,例如train(), eval(),load_state_dict, state_dict 等。


什么时候使用nn.functional.xxx,什么时候使用nn.Xxx?


这个问题依赖于你要解决你问题的复杂度和个人风格喜好。在nn.Xxx不能满足你的功能需求时,nn.functional.xxx是更佳的选择,因为nn.functional.xxx更加的灵活(更加接近底层),你可以在其基础上定义出自己想要的功能。


个人偏向于在能使用nn.Xxx情况下尽量使用,不行再换nn.functional.xxx ,感觉这样更能显示出网络的层次关系,也更加的纯粹(所有layer和model本身都是Module,一种和谐统一的感觉)。

目录
相关文章
|
1月前
|
存储 PyTorch 算法框架/工具
利用PyTorch的三元组损失Hard Triplet Loss进行嵌入模型微调
本文介绍了如何使用 PyTorch 和三元组边缘损失(Triplet Margin Loss)微调嵌入模型,详细讲解了实现细节和代码示例。
44 4
|
机器学习/深度学习 PyTorch 算法框架/工具
# Pytorch 中可以直接调用的Loss Functions总结:(二)
# Pytorch 中可以直接调用的Loss Functions总结:(二)
168 0
# Pytorch 中可以直接调用的Loss Functions总结:(二)
|
PyTorch 算法框架/工具
# Pytorch 中可以直接调用的Loss Functions总结:(一)
# Pytorch 中可以直接调用的Loss Functions总结:(一)
158 0
|
PyTorch 算法框架/工具
Pytorch Loss Functions总结
Pytorch Loss Functions总结
173 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
353 2
|
17天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
68 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
116 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
201 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
54 3
PyTorch 模型调试与故障排除指南