操作系统课程设计:新增Linux驱动程序(重制版)(二)

简介: 操作系统课程设计:新增Linux驱动程序(重制版)

五、实验步骤-实现设计内容

5.1设计思想

题目要求使用内存模拟设备增加一个驱动程序。而内存模拟设备可以模仿Ram Disk的实现方式。经查阅相关资料可得知:Ram Disk的功能是将一部分内存挂载(mount)为外存空间(磁盘)的分区进行使用。从用户的视角看,Ram Disk分区就像磁盘的分区一样,也能对文件进行读写。

但是,Ram Disk与真正的磁盘仍然存在一定区别。在虚拟机重启后,Ram Disk分区消失,Ram Disk分区内部的数据也将消失。

Ram Disk也存在自己的意义。若有几个文件需要被频繁的读写,则可以将其放到由内存开辟的Ram Disk上,大大提高了读写的速度。

在本题目中,采取的就是模仿Ram Disk的实现。在第六章节中,将展示模仿Ram Disk的实现能得到的类似于Ram Disk的效果。

Linux系统将所有设备都视作文件,/dev/设备名 不是目录,而类似于指针指向该块设备,不能直接对其进行读写而需要先进行mount挂载的操作。要读写设备中的文件时,需要先把设备的分区挂载到系统中的一个目录上,通过访问该目录来访问设备。

5.2 设计实现与源码剖析

在设计属于自己的驱动时,需要实现加载模块时的初始化函数即驱动模块的入口函数。还需要实现卸载模块时的函数,即模块的出口函数。同时,也要实现设备自己的请求处理函数。

首先,对该模块的数据结构进行设计。先定义该块的块设备名、主设备号、大小(25610241024bytes,即256MB)、扇区数为9。

#define SIMP_BLKDEV_DISKNAME "zombotany_blkdev"
#define SIMP_BLKDEV_DEVICEMAJOR COMPAQ_SMART2_MAJOR 
#define SIMP_BLKDEV_BYTES (256*1024*1024)
#define SECTOR_SIZE_SHIFT 9

定义gendisk表示一个简单的磁盘设备、定义该块设备的拥有者、定义块设备的请求队列指针、开辟该块设备的存储空间。

static struct gendisk * zombotany_blkdev_disk;
static struct block_device_operations  zombotany_blkdev_fops = { 
    .owner = THIS_MODULE,
};
static struct request_queue * zombotany_blkdev_queue;
unsigned char  zombotany_blkdev_data[SIMP_BLKDEV_BYTES];

入口函数与出口函数这两个函数的方法头如下:

static int __init _init(void)  
static void __exit _exit(void)  

在入口函数中需要实现的功能包括4个步骤。1.申请设备资源。若申请失败,则退出。2.设置设备有关属性。3.初始化请求队列,若失败则退出。4.添加磁盘块设备。

首先,申请设备资源。判断申请是否成功,若失败则退出。

zombotany_blkdev_disk = alloc_disk(1);
if(! zombotany_blkdev_disk){
  ret = -ENOMEM;
  goto err_alloc_disk;
}

接下来,设置设备有关属性。设置设备名、设备号、fops指针、扇区数

strcpy( zombotany_blkdev_disk->disk_name,SIMP_BLKDEV_DISKNAME);
zombotany_blkdev_disk->major = SIMP_BLKDEV_DEVICEMAJOR;
zombotany_blkdev_disk->first_minor = 0;
zombotany_blkdev_disk->fops = & zombotany_blkdev_fops;
set_capacity( zombotany_blkdev_disk, SIMP_BLKDEV_BYTES>>9);

初始化请求队列,若失败则退出。

zombotany_blkdev_queue = blk_init_queue( zombotany_blkdev_do_request, NULL);
    if(! zombotany_blkdev_queue){
        ret = -ENOMEM;
        goto err_init_queue;
    }
zombotany_blkdev_disk->queue =  zombotany_blkdev_queue;

最后添加磁盘块设备。

add_disk( zombotany_blkdev_disk);
    return 0;

模块的出口函数较为简单,只需释放磁盘块设备、释放申请的设备资源、清除请求队列。

static void __exit  zombotany_blkdev_exit(void){
    del_gendisk( zombotany_blkdev_disk);
    put_disk( zombotany_blkdev_disk);   
    blk_cleanup_queue( zombotany_blkdev_queue);
}

在实现完入口与出口函数后,需要再声明模块出入口。

module_init(xxxx_init);
module_exit(xxxx_exit);

实现模块的请求处理函数。请求处理函数涉及到的数据结构如下:当前请求、当前请求bio(通用块层用bio来管理一个请求)、当前请求bio的段链表、当前磁盘区域、缓冲区。

struct request *req;
struct bio *req_bio;
struct bio_vec *bvec;
char *disk_mem;     
char *buffer;

对于某个请求,先判断该请求是否合法。判断请求是否合法的办法就是判断其是否出现了地址越界的情况。

if((blk_rq_pos(req)<<SECTOR_SIZE_SHIFT)+blk_rq_bytes(req)>SIMP_BLKDEV_BYTES){
            blk_end_request_all(req, -EIO);
            continue;
        }

若请求合法,则获取当前地址位置。

disk_mem =zombotany_blkdev_data + (blk_rq_pos(req) << SECTOR_SIZE_SHIFT);
req_bio = req->bio;

判断请求类型,处理读请求与写请求的过程大同小异的。在处理读请求时,遍历请求列表,找到缓冲区与bio,将磁盘内容复制到缓冲区。找到磁盘下一区域,然后处理请求队列下一个请求。

while(req_bio != NULL){
  for(i=0; i<req_bio->bi_vcnt; i++){
    bvec = &(req_bio->bi_io_vec[i]);
    buffer = kmap(bvec->bv_page) + bvec->bv_offset;
    memcpy(buffer, disk_mem, bvec->bv_len);
    kunmap(bvec->bv_page);
        disk_mem += bvec->bv_len;
        }
    req_bio = req_bio->bi_next;
    }
    __blk_end_request_all(req, 0);
    break;

在处理写请求时,是把缓冲区内容复制到磁盘上。只需在调用memcpy时将两个参数互换即可,其余相同。

memcpy(disk_mem, buffer, bvec->bv_len);

该部分代码如下:

while(req_bio != NULL){
                for(i=0; i<req_bio->bi_vcnt; i++){
                    bvec = &(req_bio->bi_io_vec[i]);
                    buffer = kmap(bvec->bv_page) + bvec->bv_offset;
                    memcpy(disk_mem, buffer, bvec->bv_len);
                    kunmap(bvec->bv_page);
                    disk_mem += bvec->bv_len;
                }
                req_bio = req_bio->bi_next;
            }
            __blk_end_request_all(req, 0);
            break;

该模块完整代码见附录,文件名为zombotany_blkdev.c

在编写完模块代码后,还需要编写Makefile文件。Linux的文件系统中,文件没有扩展名。Makefile文件没有扩展名。

首先,在第一次读取执行此Makefile时,KERNELRELEASE没有被定义,所以make只会执行else之后的内容。

ifneq ($(KERNELRELEASE),)

得到内核源码的路径与当前的工作路径

KDIR ?= /lib/modules/$(shell uname -r)/build

PWD := $(shell pwd)

若之前执行过Makefile,则需要清理掉之前编译过的模块。

modules:
    $(MAKE) -C $(KDIR) M=$(PWD) modules
  modules_install:
$(MAKE) -C $(KDIR) M=$(PWD) modules_install
clean:
        rm -rf *.o *.ko .depend *.mod.o *.mod.c Module.* modules.*
.PHONY:modules modules_install clean

生成.o文件

else
    obj-m := simp_blkdev.o
  endif

Makefile完整代码见附录。

5.3 操作流程

将模块源码zombotany_blkdev.c和Makefile文件放在同一目录下,如图18。

在该目录下打开控制台,输入make。则能正确地生成.o文件和.ko文件

该模块编译完成后,对其进行的测试与分析的结果详见第六章节。

六、个人结果测试与分析

模块编译完成后,首先回到该目录,执行语句insmod zombotany_blkdev.ko,将刚编译完成的zombotany_blkdev.ko模块插入。执行完成后,再执行lsmod,查看当前系统中的块设备列表。可以看到,zombotany_blkdev已经存在,已经被插入过了,且大小为256MB。也可以执行lsblk,查看当前块设备。

在根目录下的/dev/ 路径中,可以看到zombotany_blkdev已经被插入了。执行ls /dev/

在插入完成后,需要对该模块进行格式化,建立文件系统。输入mkfs.ext3 /dev/zombotany_blkdev,则在该内存模拟设备上建立了ext3文件系统。

在建立完成文件系统后,就可以将该设备挂载到文件系统的目录下。首先需要创建需要挂载的目录。mkdir -p /mnt/temp1。将块设备挂载到该目录下。mount /dev/zombotany_blkdev /mnt/temp1。再运行mount | grep zombotany_blkdev。即挂载完成。

再次执行lsmod,查看模块被调用的情况。该模块被一个用户调用。

执行ls/mnt/temp1/ 则看到当前块设备有且只有一个文件:lost+found文件。将当前目录所有文件都复制到块设备上,例如当前在该模块的源代码文件夹目录上。执行cp ./* /mnt/temp1/完成复制,再查看当前块设备文件名单。执行ls /mnt/temp1/,则可以看到该块设备被正确地写入了文件,并可以被读取到。

执行df -H,则查看当前各个设备使用情况。新增的设备zombotany_blkdev已用了2.9MB。

执行vi /mnt/temp1/zombotany_blkdev.c,还能读取这个文件。

最后对该模块进行卸载。首先删除该目录内所有文件。rm -rf /mnt/temp1/*

先取消挂载。执行umount /mnt/temp1后执行lsmod | grep zombotany_blkdev。可以看到,这个256MB大小的设备被0个用户调用。

执行rmmod zombotany_blkdev。该语句的作用是移除该模块。运行完成后,再次执行lsmod grep zombotany_blkdev。可以在控制台上看到系统并没有任何输出。说明:zombotany_blkdev模块已经彻底被移除了。

简而言之,通过测试与分析,本新增模块正确地完成了题目要求:使用模块编译的方式。可以动态加载和卸载新的驱动,如图21与28所示。可以通过命令行使用该驱动,在测试过程中每一步都有所体现。至少能保存256MB数据,并且能读取出来,如图26与27所示。需要重新编译Linux内核,模仿ramdisk实现方式。详见章节四与章节5.1。

七、小组整合

7.1本组分工情况

如表1所示

表1 小组分工

姓名 分工
1 题目1:新增Linux系统调用
2 题目2:实现基于模块的文件系统
zombotany 题目3:新增Linux驱动程序,并负责小组的工作的整合与答辩
4 题目4:统计Linux系统缺页的次数并协助进行小组工作的整合
5 题目5:进程/线程通信
相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
目录
相关文章
|
3天前
|
安全 Linux 数据安全/隐私保护
探索Linux操作系统的文件权限管理
【9月更文挑战第29天】在数字世界中,文件权限管理如同保护我们隐私的锁。本文将带你了解如何在Linux系统中设置和管理文件权限,确保你的数据安全。我们将一起学习如何通过命令行工具来控制文件访问,就像学习一门新语言一样有趣。准备好了吗?让我们一起开启这场技术之旅!
|
21天前
|
存储 安全 Linux
探索Linux操作系统的心脏:内核
在这篇文章中,我们将深入探讨Linux操作系统的核心—内核。通过简单易懂的语言和比喻,我们会发现内核是如何像心脏一样为系统提供动力,处理数据,并保持一切顺畅运行。从文件系统的管理到进程调度,再到设备驱动,我们将一探究竟,看看内核是怎样支撑起整个操作系统的大厦。无论你是计算机新手还是资深用户,这篇文章都将带你领略Linux内核的魅力,让你对这台复杂机器的内部运作有一个清晰的认识。
50 3
|
21天前
|
存储 数据挖掘 Linux
服务器数据恢复—Linux操作系统网站服务器数据恢复案例
服务器数据恢复环境: 一台linux操作系统服务器上跑了几十个网站,服务器上只有一块SATA硬盘。 服务器故障: 服务器突然宕机,尝试再次启动失败。将硬盘拆下检测,发现存在坏扇区
|
1月前
|
Linux 程序员 编译器
Linux内核驱动程序接口 【ChatGPT】
Linux内核驱动程序接口 【ChatGPT】
|
19天前
|
存储 监控 安全
探究Linux操作系统的进程管理机制及其优化策略
本文旨在深入探讨Linux操作系统中的进程管理机制,包括进程调度、内存管理以及I/O管理等核心内容。通过对这些关键组件的分析,我们将揭示它们如何共同工作以提供稳定、高效的计算环境,并讨论可能的优化策略。
22 0
|
2月前
|
网络协议 Linux Shell
探索Linux操作系统:从基础到高级编程
【8月更文挑战第31天】本文旨在为读者提供一条清晰的路径,从Linux操作系统的基础知识出发,逐步深入到高级编程技巧。我们将一起揭开Linux神秘的面纱,了解其内部工作原理,并通过实际代码示例加深理解。无论你是初学者还是有一定经验的开发者,这篇文章都将为你带来新的视角和技能提升。
|
5月前
|
Ubuntu Linux Shell
【Linux操作系统】探秘Linux奥秘:shell 编程的解密与实战
【Linux操作系统】探秘Linux奥秘:shell 编程的解密与实战
103 0
|
5月前
|
Ubuntu Linux Shell
【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战
【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战
112 0
|
5月前
|
Ubuntu Unix Linux
【Linux操作系统】探秘Linux奥秘:Linux 操作系统的解密与实战
【Linux操作系统】探秘Linux奥秘:Linux 操作系统的解密与实战
86 0
|
5月前
|
运维 Ubuntu Linux
【Linux操作系统】探秘Linux奥秘:日志管理的解密与实战
【Linux操作系统】探秘Linux奥秘:日志管理的解密与实战
73 0
下一篇
无影云桌面