使用Python实现单隐藏层神经网络的训练(一)

简介: 使用Python实现单隐藏层神经网络的训练(一)

1 实验内容


不使用Keras,Tensorfolow 或Pytorch 等框架,仅使用Numpy,Scipy 和Matplotlib 等Python 常用科学计算库,完成单隐藏层的全连接神经网络(和之后要讲的卷积神经网络形成对比),实现Scikit-learn 里的half moons 数据集的分类。


2 实验要求


使用Scikit-learn 加载half moon 数据,实现数据的可视化

构建单隐藏层的全连接神经网络,参考课件的内容,推导正、反向传播并给出代码实现

考虑不同的激活函数、不同的隐藏层宽度对网络训练和性能的影响

需要具备的功能或者模块:数据读取、加载,正反向传播,使用梯度下降训练模型(可采用mini-batch 的随机梯度下降方法),模型训练、测试性能指标的显示和评估

PPT 汇报(每组3min),提交2-4 页实验报告,需简要叙述方法原理、实验步骤、方法参数讨论、实验结果;需明确说明组员分工、给出组内排名(可标注同等贡献#)。


3 实验原理


多层感知机:

多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图:



前向传播与后向传播

神经网络实际上就是一个输入为输出为的映射函数:,只要我们通过训练得到较优的参数,那么对于任何输入我们都能得到一个与之对应的输出,至于是不是正确的,误差有多大,那就是效果的问题了。


**前向传播( Forward propagation)与反向传播( Back propagation)**是神经网络中的两个基础概念,其实模拟的就是人脑中神经元的正向传导和反向反馈信号回路。


这是一场以误差 Error为主导的反向传播 Back Propagation运动,目的是得到最优的全局参数矩阵:


前向传播输入信号直至输出产生误差,反向传播误差更新重矩阵


这句话很好地形容了信息的流动方向,权重得以在信息双向流动中得到优化,可以理解为一个带反馈校正循环的电子信号处理系统。


我们可以使用梯度下降法去优化误差。如果没有隐藏层,那么输岀层接受输入层传递的数据并产生结果,通过计算产生的误差,可以直接将误差反馈给输出层,知道参数向更优的方向调整。也就是说,此时,可以直接通过误差进行参数优化。


但是如果加入隐藏层,误差可以被直接反馈给输出层,即直接通过误差进行参数优化;然而隐藏层则不能得到误差反馈,即不能够被直接优化。反向传播算法使得误差可以被传递到隐藏层,进而产生间接误差,则隐藏层左侧的权重矩阵可以通过间接误差得到权重更新,进行迭代优化。

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
163 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
381 55
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
70 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
22天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
70 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
202 73
|
18天前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
29 1
|
1月前
|
安全 Linux 网络安全
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
61 14
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
227 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
122 3

热门文章

最新文章