m最小二乘法自适应均衡误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率

简介: m最小二乘法自适应均衡误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率

1.算法描述

    信道估计是通信系统接收机的重要功能模块,主要是用来估计信号所经历信道的冲击响应,并用于后续的信道均衡处理,以便消除多径信号混叠造成的ISI。
   信道估计的方法有很多种,大体上可分为两类,一类是基于训练序列的信道估计,而另一类是信道的盲估计(自适应估计),其估计过程不依赖已知信息。常见通信系统的信道估计,绝大部分是基于训练序列的估计方法,这里面最最常用的两个信道估计算法就是LS算法和MMSE算法。LS是最小二乘、MMSE是最小均方误差,它们都是所谓的最优化准则,即得到最优信道估计所遵循的准则,有时也被称为代价函数。

   均衡技术是对码间干扰进行适当处理,以补偿信道畸变的技术。通常把采用均衡技术来补偿码间干扰的处理器称为均衡器。设计了一种采用递归最小二乘的自适应算法的均衡滤波器,仿真结果显示均衡器可以降低码间干扰,降低误码率。

    这种方法的原理就是在发射数据符号外,还需要发射前导(Preamble)或导频(pilot)信号;如最小二乘LS、最小均方误差MMSE等基于训练序列的信道估计算法被广泛应用于信道估计;

优点:训练符号能够提供较好的性能;

缺点:由于除了发射数据符号外,还需要发射前导或导频信号,由此训练序列过长会降低频谱效率;

image.png

LS 信道估计算法简单,但是对噪声敏感,尤其在深衰落信道中,LS 信道估计算法性能明显恶化。
MMSE 信道估计算法有效地抑制了噪声干扰,性能优于 LS 信道估计算法,但需求解矩阵的逆,复杂度较高,硬件难以实现。
2.仿真效果预览
matlab2022a仿真结果如下:

image.png

3.MATLAB核心程序

    j
    %通过既有码间干扰又有白噪声信道
    [y,len,h] = func_channel(info,SNR_in_dB(j));
    %初始误码统计数
    numoferr1=0;     
    %从第len个码元开始为真实信号码元 
    for i=len+1:N+len  
        decis = 2*[y(i)>=0]-1;      
        %判断是否误码,统计误码码元个数 
        if decis~=info(i-5)                          
           numoferr1=numoferr1+1;          
        end;     
    end;      
    %未经均衡器均衡,得到的误码率 
    Pe1(j)=numoferr1/N;   
    
    %LS均衡,参考文献
    %https://wenku.baidu.com/view/3fb6f52f195f312b3069a5a6.html
    Order = 5;
    z     = func_LS(y,info,Order);
    %初始误码统计数
    numoferr2=0;     
    %从第len个码元开始为真实信号码元 
    for i=1:N   
        decis(i) = 2*[z(i+Order)>=0]-1;      
        %判断是否误码,统计误码码元个数 
        if decis(i)~=info(i)                          
           numoferr2=numoferr2+1;          
        end;     
    end;      
    Pe2(j)=numoferr2/N;
 
    %DEF均衡
    z     = func_DEF(y(6:length(info)+5),info,h);
    decis = [2*[z>=0]-1]; 
    %初始误码统计数
    numoferr3=0;     
    %从第len个码元开始为真实信号码元 
    for i=1:N   
        if decis(i)~=info(i)                          
           numoferr3=numoferr3+1;          
        end;     
    end;      
    Pe3(j)=numoferr3/N;
 
    %LMMSE均衡
    z     = func_LMMSE(y,h,SNR_in_dB(j));
    decis = [2*[z>=0]-1]'; 
    %初始误码统计数
    numoferr4=0;     
    %从第len个码元开始为真实信号码元 
    for i=1:N-5    
        if decis(i+5)~=info(i)                          
           numoferr4=numoferr4+1;          
        end;     
    end;      
    Pe4(j)=numoferr4/N; 
end;  
figure;
semilogy(SNR_in_dB,Pe1,'red*-');
hold on; 
semilogy(SNR_in_dB,Pe2,'b-s');
hold on; 
semilogy(SNR_in_dB,Pe3,'k--','linewidth',2);
hold on; 
semilogy(SNR_in_dB,Pe4,'m->','linewidth',2);
grid on
legend('无均衡器','LS均衡器','DEF均衡器','LMMSE均衡器');
xlabel('SNR(dB)');
ylabel('error');
01-139m
相关文章
|
10天前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
10天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
22天前
|
算法 数据建模 调度
【INC-MPPT】增量导纳算法追踪光伏的最大功率点用于光伏的并网接入研究(Simulink仿真实现)
【INC-MPPT】增量导纳算法追踪光伏的最大功率点用于光伏的并网接入研究(Simulink仿真实现)
|
16天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
127 3
|
21天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
22天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
21天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
138 14
|
16天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
16天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)

热门文章

最新文章