【实战场景一】设计一个分布式环境下全局唯一的信号器

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 如何正确设计一个分布式环境下全局唯一的信号器?
前面,我们罗列了一些面试时可能会到的一些技术上的问题。但都是基于理论,也就是外面所说的八股文。应付一些基础的或者中级的开发岗位来说,是没什么问题的,但如果想拿高薪,或者升职的话,仅靠八股文是仅仅不够的,所以今天就开始进行场景实战,以此来提升大家的内功。

如何设计一个分布式环境下全局唯一的信号器

今天,叶秋面试到最后环节,一位美女面试官问了一个分布式的基础实战问题:如果让你去设计一个分布式环境下的全局唯一的信号器,你会怎么设计?

这里先说下本人的思路,完整的正确答案放到后面。

我刚听到这个问题第一反应就是:

  1. 使用UUID

优点:全球唯一,如果后续有项目迁移或者数据合并之类的,就完全不用担心数据冲突问题

缺点:使用字符串存储,会消耗一定量的存储空间,如果数据比较大,会很耗性能。

  1. 使用数据库自增的id

优点:它的优点就是UUID的缺点,简单且节省空间和性能

缺点:它的缺点就是UUID的优点,数据库自增的id是仅限于单库,如果后续数据合并冲突问题会很令人头疼。可以说,它和UUID的优缺点刚好相反。

  1. 使用雪花算法生成的ID

优点:它是个long型ID,灵活方便,不担心数据冲突的问题

缺点:这个没说上来,是叶秋考虑不周了。(一般分布式项目中使用的都是雪花算法,倒是没考虑到它的缺点)。

这边说了一些通用对方法,但实际上还要考虑到具体的场景和产品需求来确定采用哪一种方法。

只见那个美女面试官,微笑着点了点头说,整体来看,说的还是不错,但还是少了一种常用的方法,然后巴拉巴拉了一堆,最后总结如下:

1. UUID

利用程序生成的ID,一般来说全球唯一。

优点:

  1. 简单,代码方便,且生成ID性能非常好,基本不会有性能问题。
  2. 全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。

缺点:

  1. 没有排序,无法保证趋势递增。
  2. UUID往往是使用字符串存储,查询的效率比较低。
  3. 存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。
  4. 传输数据量大
  5. 不可读。
是叶秋菜鸡了,自以为回答的很不错了,结果还是漏说了许多,看来还得加强学习。基础不牢固。

2. 数据库自增长序列或字段

最常见的方式。利用数据库,当前数据库唯一。

优点:

  1. 简单,代码方便,性能可以接受。
  2. 数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

  1. 不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
  2. 在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
  3. 如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。
  4. 分表分库的时候会有麻烦。

优化方案:

针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:
Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3 生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

汗,真是汗颜,看到这个优化方案,真是醍醐灌顶啊,竟然连这个也没想到,顿感对不起当前拿的工资了。是安逸太久了,不说了,这次要真去面试了。

3. snowflake算法

snowflake 是 twitter 开源的分布式ID生成算法,其核心思想为,一个long型的ID:

在这里插入图片描述

优点:

  1. 不依赖于数据库,灵活方便,且性能优于数据库。
  2. ID按照时间在单机上是递增的。

缺点:

  1. 在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

4 Redis生成ID

我们可以通过Redis生成全局唯一的ID。用Redis的原子操作 INCRINCRBY来实现。

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25

优点:

  1. 不依赖于数据库,灵活方便,且性能优于数据库。
  2. 数字ID天然排序,对分页或者需要排序的结果很有帮助。

    缺点:

  3. 如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。
  4. 需要编码和配置的工作量比较大。
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
27天前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
44 1
|
1月前
|
NoSQL Java Redis
开发实战:使用Redisson实现分布式延时消息,订单30分钟关闭的另外一种实现!
本文详细介绍了 Redisson 延迟队列(DelayedQueue)的实现原理,包括基本使用、内部数据结构、基本流程、发送和获取延时消息以及初始化延时队列等内容。文章通过代码示例和流程图,逐步解析了延迟消息的发送、接收及处理机制,帮助读者深入了解 Redisson 延迟队列的工作原理。
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
61 4
|
1月前
|
SQL NoSQL 安全
分布式环境的分布式锁 - Redlock方案
【10月更文挑战第2天】Redlock方案是一种分布式锁实现,通过在多个独立的Redis实例上加锁来提高容错性和可靠性。客户端需从大多数节点成功加锁且总耗时小于锁的过期时间,才能视为加锁成功。然而,该方案受到分布式专家Martin的质疑,指出其在特定异常情况下(如网络延迟、进程暂停、时钟偏移)可能导致锁失效,影响系统的正确性。Martin建议采用fencing token方案,以确保分布式锁的正确性和安全性。
43 0
|
1月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
47 0
|
3月前
|
机器学习/深度学习 分布式计算 PyTorch
大规模数据集管理:DataLoader在分布式环境中的应用
【8月更文第29天】随着大数据时代的到来,如何高效地处理和利用大规模数据集成为了许多领域面临的关键挑战之一。本文将探讨如何在分布式环境中使用`DataLoader`来优化大规模数据集的管理与加载过程,并通过具体的代码示例展示其实现方法。
182 1
|
3月前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
123 3
|
3月前
|
消息中间件 Java Kafka
"Kafka快速上手:从环境搭建到Java Producer与Consumer实战,轻松掌握分布式流处理平台"
【8月更文挑战第10天】Apache Kafka作为分布式流处理平台的领头羊,凭借其高吞吐量、可扩展性和容错性,在大数据处理、实时日志收集及消息队列领域表现卓越。初学者需掌握Kafka基本概念与操作。Kafka的核心组件包括Producer(生产者)、Broker(服务器)和Consumer(消费者)。Producer发送消息到Topic,Broker负责存储与转发,Consumer则读取这些消息。首先确保已安装Java和Kafka,并启动服务。接着可通过命令行创建Topic,并使用提供的Java API实现Producer发送消息和Consumer读取消息的功能。
71 8
|
3月前
|
资源调度 Java 调度
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决

热门文章

最新文章