3. Protobuf基本用法
首先看下下面这个proto文件,我们后面的proto基本用法都是基于这个proto进行讲解
syntax = "proto3"; package pkgName; option go_package = "./"; message mmData { optional int32 num = 1; optional int32 def_num = 2 [default=10]; required string str = 3; repeated string rep_str = 4; }
0. 使用protoc 生成go文件
(可看完·3. Protobuf的基本用法·,在来看这部分)
---my_project |---06-protocol_buffers |---pbrpc |---service |---service.proto
pbrpc/service/service.proto:
syntax = "proto3"; package hello; // go module = MicroServiceStudy01 option go_package = "MicroServiceStudy01/06-protocol_buffers/pbrpc/service"; message Request{ string value = 1; }
使用protoc:
cd 06-protocol_buffers/pbrpc/service
protoc -I . --go_out=. hello.proto
如果这样执行的话,他的结果是在你go_out目录(这里是当前目录)存放,并且按照你定义的go_package的名称,在你go_out目录下创建一个目录结构:
如果你不想让他帮你生成一个go_package的目录结构,那么就需要指定一个前缀:
protoc -I . --go_out=. --go_opt=module="MicroServiceStudy01/06-protocol_buffers/pbrpc/service" hello.proto
这样就没有再根据go_pacakage生成目录结构,而是直接存放在了go_out目录:
我不理解,如果目的是存放在当前目录,为什么不把go_package="./",如果想存放在当前目录下的子目录,就go_package=“./subpkg “,上面这种做法,我无法理解,暂时就当做学了个参数用法吧,有大佬明白的可以留言。
--go_out=./:proto-gen-go插件编译产物的存放目录,这里是存放到当前目录,注意生成 的.pb.go文件的最终位置是你的--go_out=?位置+go_package=?位置,后者是在--go_out位置之后,进一步指定生成的.pb.go文件的存放路径。
-I ../:--proto_path=PATH的缩写
表示引入文件的目录路径,这里有坑。(这里如果看不懂,看到下面的import就明白了)
-I参数简单来说,就是如果多个proto文件之间有互相依赖,生成某个proto文件时,需要import其他几个proto文件,这时候就要用-I来指定搜索目录。如果没有指定-I参数,则在当前目录进行搜索。(这里的例子命令便是)
每个-I参数都引入一个目录,proto文件中引入了几个外部proto文件理论来说就需要多少个-I(同一目录的可以一次性引入),再加上待编译的proto也需要引入,所以上面这里就用了两个-I来引入目录文件。
--go_opt=moudle=....:protoc—gen-go插件的opt参数,采用go moudle模式.
hello.proto:proto文件路径。
1. syntax
表明使用proto3语法;如果你没有指定这个,编译器会使用proto2语法;这个指定语法行必须是文件的非空非注释的第一个行
2. 包(Package)
proto文件使用关键字package指定当前包名,类似于模块,定义proto包名,可以为.proto文件新增一个可选的package声明符作为生成语言的namespace,用来防止不同的消息类型有命名冲突.
3. 选项(Options)
在定义.proto文件时能够标注一系列的options。Options并不改变整个文件声明的含义,但却能够影响特定环境下处理方式。完整的可用选项可以在google/protobuf/descriptor.proto找到。
在消息定义之前,可以通过option来进行配置,常用的option:
option go_package = "path;name";
path 表示生成的go文件的存放地址,会自动生成目录的。
name 表示生成的go文件所属的包名
4. 消息类型(message)
Protobuf中定义一个消息类型是通过关键字message字段指定的,这个关键字可以理解为Go语言的stuct关键字,用protobuf编译器将proto编译成Go代码之后,每个message都会生成一个名字与之对应的stuct结构体。
如上面的,就会生成一个名字为mmData的结构体。
变量(字段)的定义格式为:
[修饰符(可选)][数据类型][变量名(字段名)] = [唯一标识符] ;
其中唯一标识符是用来标识字段的,同一个message中字段的标识符不能相同。
1. 字段规则(字段修饰符)
message中的字段规则有三种。
required: 字段属性为必填字段。若不设置,则会导致编解码异常,导致消息被丢弃。
optional : 字段属性为可选字段。发送方可以选择性根据需要进行设置;
对于optional属性的字段,可以通过default关键字为字段设置默认值,即当发送方没有对该字段进行设置的时候,将使用默认值。
如果没有对字段设置默认值,就会根据特定的类型给字段赋予特定的默认值。
对于bool类型,默认值为false;对于string类型,默认值为空字符串;对于数值类型,默认值为0;对于枚举类型,默认值是枚举类型中的第一个值。
repeated : 字段属性为可重复字段,该字段可以包含[0,n]个元素,字段中的元素顺序被保留。类似于go的切片。
注意:
1.在proto3版本中,字段规则上移除了required,并把optional字段改名为singular。所有没有指定字段规则的字段默认为optional,对于为什么删除了require规则,参考:为什么 proto3 移除了 required 和 optional?
2.在proto2版本中,默认配置下,一个optional没有被设置或者被显示的设置为默认值,在序列化二进制格式的时候,这个字段将会被去掉,导致反序列化之后,无法区分当初没有设置还是设置了默认值,即使使用hasXXX()方法,对于设置的默认值的字段,也是返回false。解决方法:区分 Protobuf 中缺失值和默认值
2. 标识号(唯一标识符)
在消息体的定义中,每个字段都必须要有一个唯一的标识号。
这些标识号是用来在消息的二进制格式中识别各个字段的,一旦使用就不能再改变,否则会导致原有消息编解码出现异常。
标识号是[0,2^29 - 1]范围内的一个整数,其中**[19000,19999)之间的标识号在protobuf协议的实现中被预留了**,所以特写注意不要使用这个范围内的标识号,若使用进行编译的时候也会告警:
Field numbers 19000 through 19999 are reserved for the protocol buffer library implementation.
注意:
[1,15]内的标识号在编码的时候占用一个字节,[16,2047]之内的标识符占用两个字节,所以尽量为频繁使用的字段分配[1,15]内的标识号,另外预留出来一部分给未来可能频繁使用的字段。
3. 数据类型
3.1 基本数据类型
关于字段的默认值:
string类型的变量,默认值是空字符串
bytes类型的变量,默认值是空byte数组
bool类型的变量,默认值是false
数字类型的变量,默认值是0
枚举类型的变量,默认值是第一个枚举值,而且这个第一个枚举值的数字值必须是0
3.2 枚举类型
字段类型除了上述基本的字段类型之外,也可以是枚举类型。
syntax = "proto3"; package main; option go_package = "./"; // 定义枚举类型 enum DayName { Sun = 0; Mon = 1; Tues = 2; Wed = 3; Thur = 4; Fri = 5; Sat = 6; } message workDay { // 消息类型使用枚举类型 optional DayName day = 1; }
protoc --go_out=./ hello.proto生成的go文件里对应为const:
// 定义枚举类型 type DayName int32 const ( DayName_Sun DayName = 0 DayName_Mon DayName = 1 DayName_Tues DayName = 2 DayName_Wed DayName = 3 DayName_Thur DayName = 4 DayName_Fri DayName = 5 DayName_Sat DayName = 6 ) .... type WorkDay struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // 消息类型使用枚举类型 Day *DayName `protobuf:"varint,1,opt,name=day,proto3,enum=main.DayName,oneof" json:"day,omitempty"` }
枚举常量的值必须在32位整数范围内,因为enum值是使用可编码方式存储的,对负数存储不够高效,因此不推荐在enum中使用负数。
枚举类型可以定义在message内,也可以定义在message外,若定义在message内,其他message要使用则需要通过messageType.enumType来进行引用。
默认情况下,枚举类型中的字段值不可重复,但是通过对enum添加option allow_alias = true;来达到对同一个枚举值起一个别名的目的,若不添加allow_alise并且有重复的枚举值编译的时候会报错。
syntax = "proto3"; package pkgName; option go_package = "./"; // 定义枚举类型 enum DayName { // 若不添加该option,会报错: // "pkgName.Test" uses the same enum value as "pkgName.Sat". // If this is intended, set 'option allow_alias = true;' to the enum definition. option allow_alias = true; Sun = 0; Mon = 1; Tues = 2; Wed = 3; Thur = 4; Fri = 5; Sat = 6; Test = 6; // Test与Sat字段值重名 }
3.3 map数据类型
除了上述类型之外,message还支持map类型。
syntax = "proto3"; package pkgName; option go_package = "./"; message TData { map<int32, string> data = 1; }
在生成的go文件对应map类型:
type TData struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields Data map[int32]string `protobuf:"bytes,1,rep,name=data,proto3" json:"data,omitempty" protobuf_key:"varint,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"` }
注意:
1.protobuf中的map实质上是无序的
2.proto中map类型不能用optional/required/repeated任何类型修饰。
3.4 message类型
protobuf允许将其他消息类型用作字段类型。
如下面userData中存在一个workDay类型的数据:
syntax = "proto3"; package pkgName; option go_package = "./"; message workDay { int day = 1; } message userData { workDay userDays = 1; }
3.5 嵌套消息类型
message可以无限嵌套
syntax = "proto3"; package pkgName; option go_package = "./"; message OuterData1 { // 嵌套消息定义 message TData { int32 a = 1; } // 引用嵌套消息 TData data1 = 1; OuterData2.TData data2 = 2; } message OuterData2 { // 嵌套消息定义 message TData { int32 a = 1; } }
在生成的hello.pb.go中对应:
type OuterData1 struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // 引用嵌套消息 Data1 *OuterData1_TData `protobuf:"bytes,1,opt,name=data1,proto3" json:"data1,omitempty"` Data2 *OuterData2_TData `protobuf:"bytes,2,opt,name=data2,proto3" json:"data2,omitempty"` } .... type OuterData2 struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields }
3.6 Any字段(没看懂)
syntax = "proto3"; import "google/protobuf/any.proto"; package pkgName; option go_package = "./"; message ErrorStatus { string message = 1; repeated google.protobuf.Any details = 21; }
3.7 oneof 字段
如果你的 message 包含许多可选字段,并且最多只能同时设置其中一个字段,则可以使用 oneof 功能强制执行此行为并节省内存。
Oneof 共享内存中的所有字段,并且最多只能同时设置一个字段。设置 oneof 的任何成员会自动清除所有其他成员。你可以使用特殊的 case() 或 WhichOneof() 方法检查 oneof 字段中当前是哪个值(如果有)被设置,具体方法取决于你选择的语言。
使用案例:
要在 .proto 中定义 oneof,请使用 oneof 关键字,后跟你的 oneof 名称,在本例中为 test_oneof:
syntax = "proto3"; import "google/protobuf/any.proto"; package pkgName; option go_package = "./"; message SampleMessage { oneof test_oneof { string name = 1; string nike_name = 2; } }
然后,将 oneof 字段添加到test_oneof的定义中。
你可以在test_oneof添加任何类型的字段,但不能使用 required,optional 或 repeated 关键字。如果需要向 oneof 添加重复字段,可以使用包含重复字段的 message。
在生成的代码中,oneof 字段与常规 optional 方法具有相同的 getter 和 setter。你还可以使用特殊方法检查 oneof 中的值(如果有)。
在生成的hello.pb.go中为:
type SampleMessage struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // Types that are assignable to TestOneof: // *SampleMessage_Name // *SampleMessage_NikeName TestOneof isSampleMessage_TestOneof `protobuf_oneof:"test_oneof"` } .... type SampleMessage_Name struct { Name string `protobuf:"bytes,1,opt,name=name,proto3,oneof"` } type SampleMessage_NikeName struct { NikeName string `protobuf:"bytes,2,opt,name=nike_name,json=nikeName,proto3,oneof"` } ....
5. 定义服务(service)
如果要将 message 类型与 RPC(远程过程调用)系统一起使用,则可以在 .proto 文件中定义 RPC 服务接口,protocol buffer 编译器将以你选择的语言生成服务接口和stub(桩)。
因此,例如,如果要定义一个 RPC 服务,其中包含一个根据 SearchRequest 返回 SearchResponse 的方法,可以在 .proto 文件中定义它,如下所示:
syntax = "proto3"; package pkgName; option go_package = "./"; message SearchRequest { string query = 1; int32 page_number = 2; int32 result_per_page = 3; } message SearchResponse { string result = 1; } service SearchService { rpc Search (SearchRequest) returns (SearchResponse); }
与 ProtoBuf 直接搭配使用的 RPC 系统是 gRPC :一个 Google 开发的平台无关语言无关的开源 RPC 系统。gRPC 和 ProtoBuf 能够非常完美的配合,你可以使用专门的 ProtoBuf 编译插件直接从.proto 文件生成相关 RPC 代码。
6. import导入其他proto文件
import
我们可以通过import导入其他proto文件,并使用该proto文件中的定义的消息类型。
---my_project |---protocol |---aaa | |---aaa.proto |---bbb |---bbb.proto
aaa/aaa.proto
syntax = "proto3"; package aaa; option go_package = "./"; message Something { string msg = 1; }
bbb/bbb.proto
syntax = "proto3"; package bbb; option go_package = "./"; import "aaa/aaa.proto"; message Something2 { aaa.Something something = 1; }
虽然会报红但是不用管,生成 pb.go 的时候,假设当前在 my_project/protocol/bbb 目录下,则执行:
protoc -I ../ -I ./ --go_out=./ bbb.proto # -I ../ : 在上一层目录中寻找引入的proto文件 # -I ./ : 在本层文件中找待编译的proto文件(顺序无所谓)
protoc有一个参数-I,表示引入文件的目录路径,这里有坑。
-I参数简单来说,就是如果多个proto文件之间有互相依赖,生成某个proto文件时,需要import其他几个proto文件,这时候就要用-I来指定搜索目录。如果没有指定-I参数,则在当前目录进行搜索。
每个-I参数都引入一个目录,proto文件中引入了几个外部proto文件理论来说就需要多少个-I(同一目录的可以一次性引入),再加上待编译的proto也需要引入,所以上面这里就用了两个-I来引入目录文件。
这样 protoc 可以在 -I path + import path => “./…/aaa/aaa.proto” 路径下找到 aaa.proto 这个文件。
# 当然也可以 import “aaa.proto”,-I=./…/aaa,同样可以执行成功。 protoc -I ../aaa -I ./ --go_out=./ bbb.proto
import public
默认情况下,proto只允许引用直接import的文件中定义的数据类型。
如b.proto中导入了a.proto,c.proto中导入了b.proto;默认情况下,c.proto中只能引用b.proto中定义的数据类型,而引用不到a.proto中的数据类型。若c.proto要使用a.proto中定义的数据类型,则b.proto引用a.proto的时候要使用import public。
---my_project |---protocol |---aaa | |---aaa.proto |---bbb |---bbb.proto |---ccc |---ccc.proto
aaa/aaa.proto
syntax = "proto3"; package aaa; option go_package = "./"; message Something { string msg = 1; }
bbb/bbb.proto
syntax = "proto3"; package bbb; option go_package = "./"; // import "aaa/aaa.proto"; 不加会报错 import public "aaa/aaa.proto"; message Something2 { aaa.Something something = 1; }
ccc/ccc.proto
syntax = "proto3"; package ccc; option go_package = "./"; import "bbb/bbb.proto"; message Something3 { aaa.Something something = 1; }
执行:
protoc -I ../ -I ../ -I ./ --go_out=./ ccc.proto
这种用法在迁移proto文件到新的位置的时候十分有用,如Message类要从old.proto迁移到new.proto文件中,这个时候如果要在不修改对old.proto的文件的情况下,直接将Message移动到new.proto中,然后在old.proto中import public new.proto即可。
7. 更新Message消息类型原则
为了达到前后消息类型兼容的目的,扩展Message消息类型的时候需要注意一下几点:
1.不要更改任何已有的字段的数值标识。
2.所添加的字段属性必须是optional 或者repeated类型,如果扩展required类型,会导致旧的消息解析异常
3.非required字段可以移除。要保证它们的标示在新的消息类型中不再使用
4.一个非required的字段可以转换为一个扩展,反之亦然——只要它的类型和标识号保持不变。
5.int32, uint32, int64, uint64,和bool是全部兼容的,这意味着可以将这些类型中的一个转换为另外一个,而不会破坏向前、 向后的兼容性。如果解析出来的数字与对应的类型不相符,那么结果就像在C++中对它进行了强制类型转换一样(例如,如果把一个64位数字当作int32来 读取,那么它就会被截断为32位的数字)。
6.sint32和sint64是互相兼容的,但是它们与其他整数类型不兼容。
7.string和bytes是兼容的——只要bytes是有效的UTF-8编码。
8.嵌套消息与bytes是兼容的——只要bytes包含该消息的一个编码过的版本。
9.fixed32与sfixed32是兼容的,fixed64与sfixed64是兼容的。