机器学习--决策树、线性模型、随机梯度下降

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 机器学习--决策树、线性模型、随机梯度下降

b9fb91a9f5ea46f9bbbc18f7f72e1b0a.png

一、决策树

0330bde94b25435b807c436cb0c7a975.png

决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。


在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。


决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。


用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。


好处:


可以解释(可以让人看到对数据处理的过程)【常用于银行业保险业】;

可以处理数值类和类别类的特征;

坏处:


不稳定(数据产生一定的噪音之后,整棵树构建出的样子可能会不一样)【使用集成学习 (ensemble learning)可以解决】

数据过于复杂会生成过于复杂的树,会导致过拟合【把决策树的枝剪掉一些(在训练时觉得太复杂了就停下来,或在训练之后把特往下的节点给剪掉)】

大量的判断语句(太顺序化),不太好并行【在性能上会吃亏】

决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。


1) 开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。

2) 如果这些子集已经能够被基本正确分类,那么构建叶节点,并将这些子集分到所对应的叶节点去。

3)如果还有子集不能够被正确的分类,那么就对这些子集选择新的最优特征,继续对其进行分割,构建相应的节点,如果递归进行,直至所有训练数据子集被基本正确的分类,或者没有合适的特征为止。

4)每个子集都被分到叶节点上,即都有了明确的类,这样就生成了一颗决策树。

随机森林——让决策树稳定的方法


训练多个决策树来提升稳定性:

每棵树会独立的进行训练,训练之后这些树一起作用得出结果;

分类的话,可以用投票(少数服从多数);

回归的话,实数值可以时每棵树的结果求平均;

随机来自以下两种情况:

Bagging:在训练集中随机采样一些样本出来(放回,可重复);

在bagging出来的数字中,再随机采样一些特征出来,不用整个特征;  

Boosting——另一个提升树模型的方法


顺序完成多个树的训练(之前是独立的完成)

例子说的是,利用训练好的树与真实值做残差来训练新的树,训练好了之后再与之前的树相加

残差 等价于 取了一个平均均方误差(预测值与真实值的)再求梯度乘上个负号

总结:


树模型在工业界用的比较多【简单,训练算法简单,没有太多的超参数,结果还不错】(不用调参结果还不错)

树模型能够用的时候,通常是第一选择。


二、线性模型


以之前房价预测的例子: 在模型中的参数w(权重)与b(偏差)是可以通过数据学习的

1321f1251e3d460897ffae2a8f805a6d.png


线性回归预测的方程:

a3b69f910ebe40f49c079acec6440c12.png


目标函数(优化 平均均方误差 MSE)


b4462ce224a14f86af7b425d923d65f7.png

回归的输出是一段连续的实数,而分类是输出对样本类别的预测;

在这个部分,我们所关心的是多类的分类问题

可以使用向量来输出(不是输出1个元素而是m个元素 m为类别数);

使用线性模型预测出样本数据类别的置信度,最大置信度的类别为样本数据所对于的类别并用onehot(独热)编码输出。

这里的目标函数是MSE(均方误差)

使用MSE做为目标函数的分类存在问题


使用均方误差(MSE)作为目标函数,使得预测值趋近真实值,但是作为分类关心的是数据对应类别的置信度。


解决方法:


让模型更加专注到把正确的类别弄出来;

具体来说:把预测的分数换成概率的形式(Softmax函数);

衡量真实值概率与预测值概率的区别,用Cross-entropy(交叉熵)  。

总结


线性模型是一个形式简单、易于建模的机器学习模型,因为w直观表达了各属性在预测中的重要性,因此线性模型有很好的可解释性。

线性回归背后的逻辑是用模型的预测值去逼近真实标记y,并通过计算训练样本在向量空间上距离模型线的欧式距离之和的最小值来确定参数w和b。

线性回归可写成广义线性模型形式:g(y) = wx + b,通过选择不同的联系函数  g(.)会构成不同的线性回归模型。

在遇到多分类学习任务时,基本的解决思路是“拆解法”,即将多分类任务拆为若干个二分类任务求解。

当不同类别的样例数不同时,会造成类别不平衡问题,解决该问题的基本策略是对数据进行“再缩放。


三、随机梯度下降


我们要求解,一般是可以通过显式解来求的,一般使用随机梯度下降的方法(SGD)


随机梯度下降(SGD)是一种简单但非常有效的方法,多用用于支持向量机、逻辑回归(LR)等凸损失函数下的线性分类器的学习。并且SGD已成功应用于文本分类和自然语言处理中经常遇到的大规模和稀疏机器学习问题。

SGD既可以用于分类计算,也可以用于回归计算。


SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样本量及其大的情况下,可能不用训练完所有的样本就可以获得一个损失值在可接受范围之内的模型了。(重点:每次迭代使用一组样本。)

为什么叫随机梯度下降算法呢?这里的随机是指每次迭代过程中,样本都要被随机打乱,这个也很容易理解,打乱是有效减小样本之间造成的参数更新抵消问题。


小批量随机梯度下降(Mini-batch SGD)


小批量随机梯度下降,是整个机器学习里面,目前来说几乎是唯一的求解方法,虽然线性模型有很多的方法来求解,但是小批量随机梯度下降可以解决出决策树以外的模型。


w 是模型的参数,包括线性模型的w(权重)和b(偏移)

b 表示批量大小【需要自己设计,老师的动手学深度学习的课程里面有讲怎么选】

η 表示在时间 t 的学习率【需要我们来设计,不能选太小,会走不动;也不能选太大,可能整个模型就出问题了】33bfc20d508a480a82d37c9e6ef90366.png


步骤:


时刻1时随机的取一个 w1 ;

持续时间到模型收敛(发现目标函数在每个样本平均的损失不再下降;或者是其他的指标基本上趋向平衡)

在每一步里,在所有的样本中随机采样1个 It 出来,It 的大小是等于 b 的

把 It 当成是当前的训练样本 去算目标函数,再通过这个损失函数进一步求得 下一步得权重

不断重复上面的两点直至收敛

优点:小批量随机梯度下降可以解决出决策树以外的模型


缺点:超参数b与η需要自己选


实现随机梯度下降  


def SGD_LR(data_x, data_y, alpha=0.1, maxepochs=10000,epsilon=1e-4):
    xMat = np.mat(data_x)
    yMat = np.mat(data_y)
    m, n = xMat.shape
    weights = np.ones((n, 1))  # 模型参数
    epochs_count = 0
    loss_list = []
    epochs_list = []
    while epochs_count < maxepochs:
        rand_i = np.random.randint(m)  # 随机取一个样本
        loss = cost(xMat,weights,yMat) #前一次迭代的损失值
        hypothesis = sigmoid(np.dot(xMat[rand_i,:],weights)) #预测值
        error = hypothesis -yMat[rand_i,:] #预测值与实际值误差
        grad = np.dot(xMat[rand_i,:].T,error) #损失函数的梯度
        weights = weights - alpha*grad #参数更新
        loss_new = cost(xMat,weights,yMat)#当前迭代的损失值
        print(loss_new)
        if abs(loss_new-loss)<epsilon:
            break
        loss_list.append(loss_new)
        epochs_list.append(epochs_count)
        epochs_count += 1
    print('迭代到第{}次,结束迭代!'.format(epochs_count))
    plt.plot(epochs_list,loss_list)
    plt.xlabel('epochs')
    plt.ylabel('loss')
    plt.show()
    return weights


优点:


(1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据           上的损失函数,这样每一轮参数的更新速度大大加快。


缺点:


(1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。

(2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。

(3)不易于并行实现。  

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
7天前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
26 10
|
14天前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
25天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
23 3
|
27天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
30 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
2月前
|
机器学习/深度学习 算法 自动驾驶
揭秘机器学习模型的决策之道
【8月更文挑战第22天】本文将深入浅出地探讨机器学习模型如何从数据中学习并做出预测。我们将一起探索模型背后的数学原理,了解它们是如何被训练以及如何对新数据进行预测的。文章旨在为初学者提供一个清晰的机器学习过程概述,并启发读者思考如何在自己的项目中应用这些技术。
|
2月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
53 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
|
2月前
|
机器学习/深度学习 算法 搜索推荐
基于机器学习的用户行为分析:深入洞察与精准决策
【8月更文挑战第3天】基于机器学习的用户行为分析为企业提供了深入了解用户需求、优化产品设计和制定精准营销策略的有力工具。随着人工智能和大数据技术的不断发展,用户行为分析将更加智能化和个性化。未来,我们可以期待更加高效、精准的机器学习算法和模型的出现,以及更多创新性的应用场景的拓展。同时,也需要关注数据隐私和安全性问题,确保用户数据的安全和合规使用。
|
2月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【8月更文挑战第3天】在数据的海洋中探寻真知,决策树犹如智慧之树,以其直观易懂的强大功能,引领我们逐步缩小决策范围,轻松获取数据洞察。本篇将带您踏上Python机器学习之旅,从理解决策树为何受青睐开始,通过scikit-learn库实现鸢尾花数据集分类,解析其决策机制,并掌握调参技巧,最终优化模型性能,共同摘取数据科学的甜美果实。
45 1

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面