在上一篇文章中yolov4 LOSS代码详解【附代码】 * 详细讲解了训练过程中loss的实现过程。这篇文章将关注预测过程中box的解码问题。
# ---------------------------------------------------------# # 将图像输入网络当中进行预测! # ---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs)
上面这段代码中,net是我们定义的yolov4网络,images就是我们输入的图像,outputs就是网络输出。
此刻我的outputs类型是tuple形式,里面有三个output,outputs=(output0,output1,output2)。这三个output的shape分别是(1,255,19,19)、(1,255,38,38)、(1,255,76,76)。 255=3*(5+80),80是coco类别数量,5表示box的信息和是否有类。
decode_box()函数就是本次的研究内容,它会对网络的输出进行解码,获得新的输出。
decode_box详解:
获得输入尺寸
首先定义一个outputs的空列表,用来存储后面我们处理后的输出。
这里的inputs就是 网络的输出,通过enumerate进行枚举,input就是yolo的三个输出特征层。可以获得各个尺寸,以输入大小608为例,第一次遍历时,batch_size=1,input_height=input_height=19。
outputs = [] for i, input in enumerate(inputs): #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 255, 13, 13 # batch_size, 255, 26, 26 # batch_size, 255, 52, 52 #-----------------------------------------------# batch_size = input.size(0) input_height = input.size(2) input_width = input.size(3)
获得步长(缩放比)
接下来是计算缩放比例,就是计算网络输入缩小多少倍变成特征层大小【有些地方把这个比例也叫步长】。
#-----------------------------------------------# # 输入为416x416时 # stride_h = stride_w = 32、16、8 #-----------------------------------------------# stride_h = self.input_shape[0] / input_height stride_w = self.input_shape[1] / input_width
由于此时的网络输入大小是608,特征层大小为19,因此部长为32,就是缩小了32倍。
stride_h=stride_w=32
计算anchor相对特征层缩放尺寸
接下来是计算anchors的缩放尺寸。也就是将anchors映射到特征层上。
缩放前anchors:
[[ 12. 16.],
[ 19. 36.],
[ 40. 28.],------>对应76 * 76特征层
[ 36. 75.],
[ 76. 55.],
[ 72. 146.],----->对应38 * 38 特征层
[142. 110.],
[192. 243.],
[459. 401.]]---->对应19 * 19特征层
由于我们现在先需要处理的是19 * 19 这个特征层的,通过anchors_mask进行索引获得对应的anchors。此时我们计算得到的缩放比例为32,因此这三个尺寸的anchors也需要缩小32倍。
#-------------------------------------------------# # 此时获得的scaled_anchors大小是相对于特征层的 #-------------------------------------------------# scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors[self.anchors_mask[i]]]
得到缩放后的19 * 19 特征层上3种anchors的尺寸。
[(4.4375, 3.4375),
(6.0, 7.59375),
(14.34375, 12.53125)]
获得网络预测信息(box和类)
我们的input shape为(1,255,19,19),这样不太直观,也不好处理,因此我们对shape进行一个改变,变为(1,3,85,19,19),在用permute(0,1,3,4,2)对维度顺序进行改变,此刻变为(1,3,19,19,85),也就是我们得到的prediction。
这里需要说一下,prediction[...,0] = prediction[:,:,:,:,0]。
取最后一个维度【也就是5+80这个维度上】的前4列可以获得所有cell上预测box的center_x,center_y,w,h,第五列(prediction[...,4])是是否有物体【此刻的conf还是hard形式,所以需要经过sigmoid函数给出概率值】。从prediction[...,5:]就是80个类信息【同样也是hard形式】,进行sigmoid可以获得三种anchor在19 * 19网格上所有类别的预测置信度。
#-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 3, 13, 13, 85 # batch_size, 3, 26, 26, 85 # batch_size, 3, 52, 52, 85 #-----------------------------------------------# prediction = input.view(batch_size, len(self.anchors_mask[i]), self.bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous() #-----------------------------------------------# # 先验框的中心位置的调整参数 #-----------------------------------------------# x = torch.sigmoid(prediction[..., 0]) y = torch.sigmoid(prediction[..., 1]) #-----------------------------------------------# # 先验框的宽高调整参数 #-----------------------------------------------# w = prediction[..., 2] h = prediction[..., 3] #-----------------------------------------------# # 获得置信度,是否有物体 #-----------------------------------------------# conf = torch.sigmoid(prediction[..., 4]) #-----------------------------------------------# # 种类置信度 #-----------------------------------------------# pred_cls = torch.sigmoid(prediction[..., 5:])
比如我这里举个例子。比如我现在要获得所有person这个类在所有cell中内所有anchor的置信度。那么一个有3*19*19*1个值。
tensor([[[[1.5125e-03, 5.7717e-03, 1.2517e-02, ..., 9.4604e-03,
6.4645e-03, 3.9380e-03],
[3.4480e-02, 3.0047e-02, 1.8495e-02, ..., 1.7670e-02,
2.7245e-02, 1.4117e-02],
[1.1721e-01, 8.4902e-02, 2.8659e-02, ..., 4.6449e-02,
1.5122e-01, 9.6072e-02],
...,
[8.8295e-01, 9.0356e-01, 3.8897e-01, ..., 1.9456e-03,
1.5115e-02, 1.2139e-01],
[8.5030e-01, 9.4131e-01, 6.9385e-01, ..., 7.4368e-04,
4.2023e-03, 1.2149e-01],
[8.6811e-01, 8.6302e-01, 6.4376e-01, ..., 2.2633e-03,
5.0898e-03, 7.8965e-03]],
[[6.2741e-03, 1.0798e-02, 1.7037e-02, ..., 9.2335e-03,
8.9423e-03, 2.2053e-02],
[3.6071e-02, 2.1278e-02, 1.4221e-02, ..., 1.4337e-02,
1.4463e-02, 1.8076e-02],
[1.4068e-01, 9.8277e-02, 4.1939e-02, ..., 5.7934e-02,
1.5278e-01, 1.1965e-01],
...,
[8.6118e-01, 8.5999e-01, 5.3942e-01, ..., 1.2218e-03,
1.4375e-02, 2.0362e-01],
[9.1455e-01, 9.4715e-01, 7.2468e-01, ..., 8.6567e-04,
4.2050e-03, 1.5936e-01],
[8.8682e-01, 9.0414e-01, 7.7474e-01, ..., 1.7651e-03,
4.7418e-03, 1.7866e-02]],
[[1.2892e-02, 1.0655e-02, 1.8664e-02, ..., 1.4098e-02,
1.0832e-02, 2.6804e-02],
[4.9359e-02, 1.9839e-02, 3.1507e-02, ..., 1.4819e-02,
9.5383e-03, 2.0111e-02],
[1.6157e-01, 1.6885e-01, 1.2669e-01, ..., 9.5604e-02,
1.5007e-01, 1.0721e-01],
...,
[5.9196e-01, 6.2065e-01, 7.3476e-01, ..., 2.0107e-03,
1.2156e-02, 1.9672e-01],
[8.8735e-01, 9.2701e-01, 8.6674e-01, ..., 2.9043e-03,
5.8838e-03, 1.0288e-01],
[8.3874e-01, 8.6092e-01, 7.4291e-01, ..., 7.3370e-03,
8.0380e-03, 1.6741e-02]]]], device='cuda:0')
生成网格
然后我们就可以划分网格了。可以得到grid_x和grid_y。shape均为【1,3,19,19】.每种anchor都有19*19个网格。
#----------------------------------------------------------# # 生成网格,先验框中心,网格左上角 # batch_size,3,13,13 #----------------------------------------------------------# grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(x.shape).type(FloatTensor) grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(y.shape).type(FloatTensor)
按照网络格式生成先验框的宽和高
下面的代码相当于是给所有的cell都设置好anchor的尺寸。
#----------------------------------------------------------# # 按照网格格式生成先验框的宽高 # batch_size,3,13,13 #----------------------------------------------------------# anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0])) anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1])) anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape) anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape)
利用预测结果对anchors进行调整
接下来的这一步比较关键,因为我们获得分类结果是很好获得的,只需要获得置信度即可,但如果去利用anchor获得目标的尺寸【或者说box呢】。
pred-boxes是用来存储调整后的box,x.data+grid_x这种操作其实就是将预测框的坐标信息映射到特征层(我们的网格)坐标。
#----------------------------------------------------------# # 利用预测结果对先验框进行调整 # 首先调整先验框的中心,从先验框中心向右下角偏移 # 再调整先验框的宽高。 #----------------------------------------------------------# pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = x.data + grid_x pred_boxes[..., 1] = y.data + grid_y pred_boxes[..., 2] = torch.exp(w.data) * anchor_w pred_boxes[..., 3] = torch.exp(h.data) * anchor_h
输出结果归一化
得到的output的shape为【1,3*19*19,85】
#----------------------------------------------------------# # 将输出结果归一化成小数的形式 #----------------------------------------------------------# _scale = torch.Tensor([input_width, input_height, input_width, input_height]).type(FloatTensor) output = torch.cat((pred_boxes.view(batch_size, -1, 4) / _scale, conf.view(batch_size, -1, 1), pred_cls.view(batch_size, -1, self.num_classes)), -1) outputs.append(output.data)
上面就是我们box的解码过程了。最后再将输出结果经过NMS进行box过滤即可。
完整的代码:
def decode_box(self, inputs): outputs = [] for i, input in enumerate(inputs): #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 255, 13, 13 # batch_size, 255, 26, 26 # batch_size, 255, 52, 52 #-----------------------------------------------# batch_size = input.size(0) input_height = input.size(2) input_width = input.size(3) #-----------------------------------------------# # 输入为416x416时 # stride_h = stride_w = 32、16、8 #-----------------------------------------------# stride_h = self.input_shape[0] / input_height stride_w = self.input_shape[1] / input_width #-------------------------------------------------# # 此时获得的scaled_anchors大小是相对于特征层的 #-------------------------------------------------# scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors[self.anchors_mask[i]]] #-----------------------------------------------# # 输入的input一共有三个,他们的shape分别是 # batch_size, 3, 13, 13, 85 # batch_size, 3, 26, 26, 85 # batch_size, 3, 52, 52, 85 #-----------------------------------------------# prediction = input.view(batch_size, len(self.anchors_mask[i]), self.bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous() #-----------------------------------------------# # 先验框的中心位置的调整参数 #-----------------------------------------------# x = torch.sigmoid(prediction[..., 0]) y = torch.sigmoid(prediction[..., 1]) #-----------------------------------------------# # 先验框的宽高调整参数 #-----------------------------------------------# w = prediction[..., 2] h = prediction[..., 3] #-----------------------------------------------# # 获得置信度,是否有物体 #-----------------------------------------------# conf = torch.sigmoid(prediction[..., 4]) #-----------------------------------------------# # 种类置信度 #-----------------------------------------------# pred_cls = torch.sigmoid(prediction[..., 5:]) FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor #----------------------------------------------------------# # 生成网格,先验框中心,网格左上角 # batch_size,3,13,13 #----------------------------------------------------------# grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(x.shape).type(FloatTensor) grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat( batch_size * len(self.anchors_mask[i]), 1, 1).view(y.shape).type(FloatTensor) #----------------------------------------------------------# # 按照网格格式生成先验框的宽高 # batch_size,3,13,13 #----------------------------------------------------------# anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0])) anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1])) anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape) anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape) #----------------------------------------------------------# # 利用预测结果对先验框进行调整 # 首先调整先验框的中心,从先验框中心向右下角偏移 # 再调整先验框的宽高。 #----------------------------------------------------------# pred_boxes = FloatTensor(prediction[..., :4].shape) pred_boxes[..., 0] = x.data + grid_x pred_boxes[..., 1] = y.data + grid_y pred_boxes[..., 2] = torch.exp(w.data) * anchor_w pred_boxes[..., 3] = torch.exp(h.data) * anchor_h #----------------------------------------------------------# # 将输出结果归一化成小数的形式 #----------------------------------------------------------# _scale = torch.Tensor([input_width, input_height, input_width, input_height]).type(FloatTensor) output = torch.cat((pred_boxes.view(batch_size, -1, 4) / _scale, conf.view(batch_size, -1, 1), pred_cls.view(batch_size, -1, self.num_classes)), -1) outputs.append(output.data) return outputs