利用GPU预热以及同步执行正确计算卷积神经网络推理性能【附代码】

简介: 笔记

我们在评价一个卷积神经网络模型性能好坏时,通常会用AP,mAP来判断分类准确性,针对速度方面经常使用ms(毫秒),或者FPS(表示每秒处理多少张图像,或者说处理一张图像用多少秒)。在看一些代码的时候,常常会看到是直接用python中的time函数来计算,比如下面代码:

time1 = time.time()
output = model(image)
time2 = time.time()
total_time =  time2 - time1

但不知道大家在实际测试时候有没有发现一个问题,通过上面的计算给出的时间感觉并不准确,就好像你从运行代码开始,到最终给出的结果这个时间差距好像挺大的。【反正我是这么觉得】


其实这有一定的硬件影响【大家肯定觉得我再说废话,gpu和CPU不同肯定不一样】,那么如何可以更准确的计算这个时间呢?



GPU预热


我在查阅了一些资料的时候以及听到其他一些工程师说有关推理速度的时候,听到了一个词--“预热”,而这里的预热一般指的是GPU的预热。


什么叫GPU的预热呢,打个比方,我们打开电脑或者其他电子产品的时候,如果你立马用设备,会感觉有些卡顿,但如果你稍微等一下,让后台程序都跑起来再用,就明显快很多了,这就是设备的预热。同理的,GPU在你不用的时候是低功耗状态,它会把有些高性能的功能暂时关闭或降低性能,这时候如果你把模型放上面处理,你就能明显感觉到有点满,甚至你从点击程序运行以后要等个几秒钟才出结果,因为这个阶段GPU要完成很多初始化工作【当然了,这也和显卡好坏有关系】。


所以为了可以充分利用起显卡,也为了可以更准确的计算预测时间,我们可以采用模型预热的方式,其实方式很简单,就好比你让模型在显卡上先空跑一段时间。例如这样:

device = torch.device('cuda:0')
model.to(device)
model.eval()
# 预热,让模型先跑20轮
for i in range(20):
    output = model(x)

以ResNet50为例,先来看下没有预热时候测出来的速率:


predict time : 67.120902ms,FPS:14.898488646953012


再来看看预热以后计算出来的速率,是不是和上面比速度有提升呢?


predict time : 55.680942ms,FPS:17.95946634245771


预热代码:

import torch
from torchvision.models import resnet50
import time
epoch = 100
model = resnet50(pretrained=False)
device = torch.device('cuda:0')
x = torch.ones(1, 3, 640, 640).to(device)
model.to(device)
model.eval()
for _ in range(20):
    output = model(x)
times = torch.zeros(epoch)  # 用来存放每次测试结果
randn_input = torch.randn(1, 3, 640, 640).to(device)
with torch.no_grad():
    for i in range(epoch):
        time1 = time.time()
        output = model(randn_input)
        time2 = time.time()
        times[i] = time2 - time1
mean_time = times.mean().item()  # 单位是秒
print("predict time : {:.6f}ms,FPS:{}".format(mean_time*1000, 1/(mean_time)))


异步转同步


其实到这里还没有完,因为在实际计算时间的时候还牵扯一个GPU的异步处理,而python中的time函数往往是在CPU端运行的【如果你的模型本来就是用CPU推理的,那没什么问题】,这就表明你用time函数计算时间时,可能有些数据在GPU上还没处理完呢你就已经给出结果了,因此在利用GPU推理的时候,应当用torch官方提供的torch.cuda.synchronize()将模型切换到同步处理,这样的时间才是更准确的,并用torch.cuda.Event来代替time获得最终的时间。


先看一张图,图的左边是同步执行,右边是异步执行。同步执行中进程A需要等进程B执行完或者给一个响应才会继续执行进程A,而在异步执行中,进程A并不需要等待进程B的响应然后再继续执行,这就有可能会出现一种情况,一个代码可能比另一个代码先执行完。打个比方,进程A是CPU,进程B是GPU,你的模型是在GPU上执行的,如果你用time函数,实际得出的结果是进程A的,但你的模型其实已经在B中完成了,那么你这个时间就是不准确的。

40.png

为了可以更精确的判断我们的模型推理性能,我们需要将这个过程从异步转为同步。 代码如下:

import torch
from torchvision.models import resnet50
import time
epoch = 100
model = resnet50(pretrained=False)
device = torch.device('cuda:0')
x = torch.ones(1, 3, 640, 640).to(device)
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
model.to(device)
model.eval()
for _ in range(20):
    output = model(x)
times = torch.zeros(epoch)  # 用来存放每次测试结果
randn_input = torch.randn(1, 3, 640, 640).to(device)
with torch.no_grad():
    for i in range(epoch):
        starter.record()
        output = model(randn_input)
        ender.record()
        # 异步转同步
        torch.cuda.synchronize()
        times[i] = starter.elapsed_time(ender)  # 单位是毫秒
mean_time = times.mean().item()
print("predict time : {:.6f}ms,FPS:{}".format(mean_time, 1000/mean_time))

elapsed_time()这个函数返回的时间单位是毫秒,需要和time函数区分。用synchronize()可以将GPU默认的异步转同步,等待事件的完成。

现在再来看一下这次的测量时间:


predict time : 47.589127ms,FPS:21.01320347146227


注意,上面说的这些东西也受硬件、分辨率、以及你模型大小以及计算量影响的,上面说的仅是一个参考。  



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4月前
|
机器学习/深度学习
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
|
2月前
|
机器学习/深度学习
神经网络各种层的输入输出尺寸计算
神经网络各种层的输入输出尺寸计算
35 1
|
14天前
|
机器学习/深度学习 安全 网络安全
云端盾牌:云计算时代的网络安全守护在这个数字脉搏加速跳动的时代,云计算以其高效、灵活的特性,成为推动企业数字化转型的强劲引擎。然而,正如每枚硬币都有两面,云计算的广泛应用也同步放大了网络安全的风险敞口。本文旨在探讨云计算服务中网络安全的关键作用,以及如何构建一道坚不可摧的信息防线,确保数据的安全与隐私。
云计算作为信息技术领域的革新力量,正深刻改变着企业的运营模式和人们的生活。但在享受其带来的便利与效率的同时,云服务的安全问题不容忽视。从数据泄露到服务中断,每一个安全事件都可能给企业和个人带来难以估量的损失。因此,本文聚焦于云计算环境下的网络安全挑战,分析其根源,并提出有效的防护策略,旨在为云服务的安全使用提供指导和参考。
|
2月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多样化的选择,包括CPU+GPU、CPU+FPGA等多种配置,适用于人工智能、机器学习和深度学习等计算密集型任务。其中,GPU服务器整合高性能CPU平台,单实例可实现最高5PFLOPS的混合精度计算能力。根据不同GPU类型(如NVIDIA A10、V100、T4等)和应用场景(如AI训练、推理、科学计算等),价格从数百到数千元不等。详情及更多实例规格可见阿里云官方页面。
127 1
|
2月前
|
机器学习/深度学习 人工智能 调度
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
181 7
|
2月前
|
缓存
PUN☀️八、拓展网络同步:RPCs 和 Properties
PUN☀️八、拓展网络同步:RPCs 和 Properties
|
2月前
|
机器学习/深度学习 存储 自然语言处理
天啊!深度神经网络中 BNN 和 DNN 基于存内计算的传奇之旅,改写能量效率的历史!
【8月更文挑战第12天】深度神经网络(DNN)近年在图像识别等多领域取得重大突破。二进制神经网络(BNN)作为DNN的轻量化版本,通过使用二进制权重和激活值极大地降低了计算复杂度与存储需求。存内计算技术进一步提升了BNN和DNN的能效比,通过在存储单元直接进行计算减少数据传输带来的能耗。尽管面临精度和硬件实现等挑战,BNN结合存内计算代表了深度学习未来高效节能的发展方向。
34 1
|
2月前
|
存储 缓存 定位技术
如果遇到网络延迟问题,有哪些方法可以快速解决以保证视频源同步?
如果遇到网络延迟问题,有哪些方法可以快速解决以保证视频源同步?
|
2月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
48 0
下一篇
无影云桌面