利用yaml定义卷积网络【附代码】

简介: 笔记

在平常看一些卷积神经网络的时候,大多数都是直接通过写一个Model类来定义的,这样写的代码其实是比较好懂的,特别是在魔改网络的时候也很方便。然后也有一些会通过cfg配置文件进行模型的定义。在yolov5中可以看到是通过yaml文件进行网络的定义【个人感觉通过配置文件魔改网络有些不方便,当然每个人习惯不同】,可能很多人也用过,如果自己去写一个yaml文件,自己能不能定义出来呢?很多人不知道是如何具体通过yaml文件将里面的参数传入自己定义的网络中,这也就给自己修改网络带来了不便。这篇文章将仿照yolov5的方式,利用yaml定义一个自己的网络。


定义卷积块


我们可以先定义一个卷积块CBL,C指卷积Conv,B指BN层,L为激活函数,这里我用ReLu.

class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, k=1, s=1, p=None):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.conv = nn.Conv2d(in_channels, out_channels, k, s, autopad(k, p))
        self.bn = nn.BatchNorm2d(out_channels)
        self.act_fn = nn.ReLU(inplace=True)
    def forward(self, x):
        return self.act_fn(self.bn(self.conv(x)))

卷积中的autopad是自动补充pad,代码如下:

def autopad(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
    return p

定义一个Bottleneck


可以仿照yolov5定义一个Bottleneck,参考了残差块的思想。

class Bottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, shortcut=True):
        super(Bottleneck, self).__init__()
        self.conv1 = BaseConv(in_channels, out_channels, k=1, s=1)
        self.conv2 = BaseConv(out_channels, out_channels, k=3, s=1)
        self.add = shortcut and in_channels == out_channels
    def forward(self, x):
        """
        x-->conv1-->conv2-->add
          |_________________|
        """
        return x + self.conv2(self.conv1(x)) if self.add else self.conv2(self.conv1(x))

攥写yaml配置文件


然后我们来写一下yaml配置文件,网络不要很复杂,就由两个卷积和两个Bottleneck组成就行。同理,仿v5的方法,我们的网络中的backone也是个列表,每行为一个卷积层,每列有4个参数,分别代表from(指该层的输入通道数为上一层的输出通道数,所以是-1),number【yaml中的1,1,2指该层的深度,或者说是重复几次】,Module_nams【该层的名字】,args【网络参数,包含输出通道数,k,s,p等设置】

# define own model
backbone:
  [[-1, 1, BaseConv, [32, 3, 1]],  # out_channles=32, k=3, s=1
   [-1, 1, BaseConv, [64, 1, 1]],
   [-1, 2, Bottleneck, [64]]
  ]

我们现在用yaml工具来打开我们的配置文件,看看都有什么内容

    import yaml
    # 获得yaml文件名字
    yaml_file = Path('Model.yaml').name
    with open(yaml_file,errors='ignore') as f:
        yaml_ = yaml.safe_load(f)
    print(yaml_)

输出:


{'backbone': [[-1, 1, 'BaseConv', [32, 3, 1]], [-1, 1, 'BaseConv', [64, 1, 1]], [-1, 2, 'Bottleneck', [64]]]}


然后我们可以定义下自己Model类,也就是定义自己的网络。可以看到与前面读取yaml文件相比,多了一行    ch = self.yaml["ch"] = self.yaml["ch"] = 3   这个是在原yaml内容中加入一个key和valuse,3指的3通道,因为我们的图像是3通道。parse_model是下面要说的传参过程。

class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
    def forward(self, x):
        output = self.backbone(x)
        return output

传入参数


这一步也是最关键的一步,我们需要定义传参的函数,将yaml中的卷积参数传入我们定义的网络中,这里会用的一个非常非常重要的函数eval(),后面也会介绍到这个函数的用法。

这里先附上完整代码:

def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)

下面开始分析代码 。


这行代码是通过列表用来存放每层内容以及输出通道数。


# 这行代码是通过列表用来存放每层内容以及输出通道数
layer, out_channels = [], ch[-1]

然后进入我们的for循环,在每一次循环中可以获得我们yaml文件中的每一层网络:f是上一层网络的输出通道【用来作为本层的输入通道】,number【网络深度,也就是该层重复几次而已】,Module_name是该层的名字,args是该层的一些参数。


for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):

接下来会碰到一个很重要的函数eval()。下行的代码首先需要判断一下我们的Module_name类型是不是字符串类型,也就是判断一下yaml中“BaseConv”是不是字符串类型,如果是,则用eval进行对应类型的转化,转成我们的BaseConv类型。


m = eval(Module_name) if isinstance(Module_name, str) else Module_name

这里我将对eval函数在深入点,如果知道这个函数用法的,就可以略去这部分。


我们先举个例子,比如我现在有个变量a="123",这个a的类型是什么呢?他是一个str类型,不是int类型。 现在我们用eval函数转一下,看看会变成什么样子。


>>> b = eval(a) if isinstance(a,str) else a
>>> b
123
>>> type(b)
<class 'int'>

我们可以看到,经过eval函数以后,会自动识别并转为int类型。那么我继续举例子,如果现在a="BaseConv",经过eval以后会变成什么?可以看到,这里报错了!这是为什么?这是因为我们没有导入BaseConv这个类,所以eval函数并不知道我们希望转为什么类型。所以我们需要用import导入BaseConv这个类才可以。


>>> a="BaseConv"
>>> b = eval(a) if isinstance(a,str) else a
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<string>", line 1, in <module>
NameError: name 'BaseConv' is not defined

当我们导入BaseConv以后,在经过eval就可以获得:


<class 'models.BaseConv'>


接下来是获得args中的网络参数,也是通过eval进行转化


   

for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a

获取通道数,并在每次循环中对通道进行更新:可以仔细看一下ch[f]指的上一层输出通道,刚开始默认为[3],那么ch[-1]=3,我们yaml中第一层的BaseConv args[0]为32,表示输出32通道。因此在第一次循环中有in_channels = 3,out_channels=32。args也要更新,*args前面的"*"并不是指针的意思,也不是乘的意思,而是解压操作,因此我们第一次循环中得到的args=[3,32,3,1]。


# 更新通道
# args[0]是输出通道
if m in [BaseConv, Bottleneck]:
    in_channels, out_channels = ch[f], args[0]
    args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]

将参数传入模型


这里用for _ in range(number)来判断网络的深度【或者说该模块重复几次】,这里的m就是前面经过eval转化的 <class 'models.BaseConv'>。通过*args解压操作将args列表中的内容放入m中,再通过*解压操作放入nn.Sequential。


model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)

这样就可以获得我们第一次循环BaseConv了。后面的循环也是同样的反复操作而已。


BaseConv(
  (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (act_fn): ReLU(inplace=True)
)

然后是更新通道列表和layer列表,为的是获取每次循环的输出通道,没有这一步,再下一次循环的时候将不能正确得到通道数。


# 更新通道列表,每次获取输出通道
ch.append(out_channels)
layer.append(model_)

然后我们就可以对模型调用进行实例化了,可以打印下模型:


Model(
  (backbone): Sequential(
    (0): BaseConv(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (1): BaseConv(
      (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (2): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
      (1): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
    )
  )
)


同时我们也可以对模型每层可视化看一下。可以看到和我们定义的模型是一样的。

8.png

上述完整的代码:

from copy import deepcopy
from models import BaseConv, Bottleneck
import torch.nn as nn
import os
path = os.getcwd()
from pathlib import Path
import torch
def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)
class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
    def forward(self, x):
        output = self.backbone(x)
        return output
if __name__ == "__main__":
    cfg = path + '/Model.yaml'
    model = Model()
    model.eval()
    print(model)
    x = torch.ones(1, 3, 512, 512)
    output = model(x)
    torch.save(model, "model.pth")
    # model = torch.load('model.pth')
    # model.eval()
    # x = torch.ones(1,3,512,512)
    # input_name = ['input']
    # output_name = ['output']
    # torch.onnx.export(model, x, 'myonnx.onnx', verbose=True)
目录
相关文章
|
12天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
2天前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
18 7
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
5天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
6天前
|
存储 数据安全/隐私保护 云计算
多云网络环境:定义、优势与挑战
多云网络环境:定义、优势与挑战
19 5
|
5天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
13 3
|
16天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
16天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
23 1
|
18天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
62 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。