牛客网Python篇数据分析习题(一)

简介: 现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔)

1.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

你可以使用pandas打开文件,偷偷看一下里面的内容,请输出你看到的前6行数据。

1e58a830a47f22aaf0ac5cf9ef51ffc3_ed7310f480c347cea32ec672d3cd638b.png

import pandas as pd
Nowcoder=pd.read_csv("Nowcoder.csv",sep=",",dtype=object)
print(Nowcoder[1:6])

2.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

你不需要输出全部数据,请直接告诉我们这个数据集的大小,即行数与列数。

f465d7ee3eb1ed7f3de4a597c865ac41_1e0acc591098448ba84719da3b025028.png

import pandas as pd
data = pd.read_csv("Nowcoder.csv", dtype="object")
print(data.shape)

3.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

现在牛牛想知道这个数据集中第10行的用户的全部信息,请你帮他输出一下。

20b8dcf0d321bb39ec82cb2aae181b01_9d231831766040b7b92533cb632a2469.png

import pandas as pd
Nowcoder = pd.read_csv('Nowcoder.csv')
print(Nowcoder.iloc[10])

4.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

现在牛牛想知道这个数据集中第10行到第20行用户的常用语言分别是什么,请你帮他输出一下。

b9359077b5c0ec9cfcaa958f85644765_ae3847588d5d4ec09f308affb8ed2076.png

import pandas as pd
df = pd.read_csv("Nowcoder.csv")
print(df.loc[10:20, "Language"])

5.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

如果你想知道这份数据是不是所有列的信息都是有数据的,有没有哪些列的数据没有补全,请输出每列信息是否有为空值。

2d9a4c8663251d17c0aa85617e2b0baa_47662fff924d4f9680e41d7d15c602ff.png

import pandas as pd
a=pd.read_csv('Nowcoder.csv')
print(a.isnull().all())

6.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

如果你想知道哪些人经常使用Python这门语言,并且他们的其他信息是怎么样的,该怎么输出?

4f71bc23a2ebfd6abb930bc3ffc3d590_78a84c61636b4ec99240ecd600bbf2df.png

import pandas as pd
df=pd.read_csv('Nowcoder.csv',dtype=object)
print(df[df['Language']=='Python'])

7.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

假如你正在学习Python,你想知道牛客网的Python用户的成就值都有多高,请问该如何输出?

73d90b1047cc5b8f6748050114fd5881_f2a600b6a38e4c57a8aa6dfeb54a8c47.png

import pandas as pd
df=pd.read_csv('Nowcoder.csv',dtype=object)
df0=df[df['Language']=='Python']
print(df0.iloc[:,2])

8.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数

Last_submission_time:最后一次提交题目日期

假设你想查看该文件最后5行用户的用户ID、等级、成就值、常用语言,请尝试输出。

af4ea740da3c9274208447444493cd4e_68796803fb7d41548944050394d180c7.png

import pandas as pd
Nowcoder = pd.read_csv("Nowcoder.csv", sep=",")
a = Nowcoder.tail()
print(a[["Nowcoder_ID", "Level", "Achievement_value", "Language"]]


相关文章
|
20天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
51 0
|
5天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
33 2
|
21天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2
|
26天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
27 2
|
4天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
12天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
12天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
14天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
14天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
下一篇
无影云桌面