微服务Spring Boot 整合 Redis 实现 UV 数据统计

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 如何实现UV 数据统计 ? Redis 来一键搞定!

@[TOC]

⛄引言

本文参考黑马 点评项目

在各个项目中,我们都可能需要用到UV数据统计功能,这样可以使我们更加方便、快捷的查看网站的活跃度!

一、HyperLoglog基础用法

⛅HyperLoglog 基本语法、命令

HyperLogLog

  • PFADD :将指定元素添加到HyperLogLog
  • PFCOUNT:返回存储在HyperLogLog结构体的该变量的近似基数,如果该变量不存在,则返回0
  • PFMARGE:将多个 HyperLogLog 合并(merge)为一个 HyperLogLog , 合并后的 HyperLogLog 的基数接近于所有输入 HyperLogLog 的可见集合(observed set)的并集.

详见官网: Redis 中文翻译 官方网站 HyperLogLog

在这里插入图片描述

⚡HyperLoglog 命令完成功能实现

PFADD命令

在这里插入图片描述

使用PFADD 添加数据

在这里插入图片描述

PFCOUNT 统计
  • 得到基数值,白话就叫做去重值(1,1,2,2,3, 3)的插入pfcount得到的是3
  • 可一次统计多个key
  • 时间复杂度为O(N),N为key的个数
  • 返回值是一个带有 0.81% 标准错误(standard error)的近似值.

在这里插入图片描述

使用PFCOUNT查询

在这里插入图片描述

PFMERGE 合并

在这里插入图片描述

合并key

在这里插入图片描述

HyperLogLog 的应用场景
  • 基数不大的、数据量不大就用不上。
  • 有局限性,就是只能统计基数数量,没办法统计具体的内容
  • 和BitMap相比,属于两种特定统计情况,HyperLogLog比 BitMap去重方便很多
  • HyperLogLog 可以 与 BitMap 配合使用,BitMap标识那些用户活跃,HyperLogLog计数

二、UV统计 测试百万数据的统计

☁️什么是UV统计

  • UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
  • PV:全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1次PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。

通常来说 UV 会比 PV 大很多,一个网站的独立访客量 和 页面访问或点击量,肯定是独立访客大的。

UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖,那怎么处理呢?

Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。

Redis 中的HLL 是基于string数据结构实现的,单个HLL的内存永远小于16kb, 内存极低!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。

⚡使用SpringBoot单元测试进行测试百万数据统计

首先进入Redis 查看 内存占用

info memory

在这里插入图片描述

核心源码

@Test
void testHyperLoglog() {
    String[] values = new String[1000];
    int j = 0;
    for (int i = 0; i < 1000000; i++) {
        j = i % 1000;
        values[j] = "user" + i;
        if (j == 999) {
            //发送至redis
            stringRedisTemplate.opsForHyperLogLog().add("hl2", values);
        }
    }
    //统计数量
    Long count = stringRedisTemplate.opsForHyperLogLog().size("hl2");
    System.out.println("count = " + count);
}

执行后,如下图

在这里插入图片描述

再次查看内存占比

在这里插入图片描述

可以看出占用大约为14KB,存储上百万数据只占用了14KB数据,可见HyperLogLog的强大!

⛵小结

以上就是【Bug 终结者】对 微服务Spring Boot 整合 Redis 实现 UV 数据统计 的简单介绍,UV数据统计功能是很常用的,在项目中,是一个不错的亮点,统计功能也是各大系统中比较重要的功能,签到完成后,去统计本月的连续 签到记录,来给予奖励,可大大增加用户对系统的活跃度,HyperLogLog可以与BitMap相结合,从而能够能高效的对网站进行深层次的分析! 技术改变世界!!!

如果这篇【文章】有帮助到你,希望可以给【 Bug 终结者】点个赞👍,创作不易,如果有对【 后端技术】、【 前端领域】感兴趣的小可爱,也欢迎关注❤️❤️❤️ 【 Bug 终结者】❤️❤️❤️,我将会给你带来巨大的【收获与惊喜】💝💝💝!
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2天前
|
JSON Java API
利用Spring Cloud Gateway Predicate优化微服务路由策略
Spring Cloud Gateway 的路由配置中,`predicates`​(断言)用于定义哪些请求应该匹配特定的路由规则。 断言是Gateway在进行路由时,根据具体的请求信息如请求路径、请求方法、请求参数等进行匹配的规则。当一个请求的信息符合断言设置的条件时,Gateway就会将该请求路由到对应的服务上。
98 69
利用Spring Cloud Gateway Predicate优化微服务路由策略
|
18天前
|
Java Nacos Sentinel
Spring Cloud Alibaba:一站式微服务解决方案
Spring Cloud Alibaba(简称SCA) 是一个基于 Spring Cloud 构建的开源微服务框架,专为解决分布式系统中的服务治理、配置管理、服务发现、消息总线等问题而设计。
175 13
Spring Cloud Alibaba:一站式微服务解决方案
|
4天前
|
运维 监控 Java
为何内存不够用?微服务改造启动多个Spring Boot的陷阱与解决方案
本文记录并复盘了生产环境中Spring Boot应用内存占用过高的问题及解决过程。系统上线初期运行正常,但随着业务量上升,多个Spring Boot应用共占用了64G内存中的大部分,导致应用假死。通过jps和jmap工具排查发现,原因是运维人员未设置JVM参数,导致默认配置下每个应用占用近12G内存。最终通过调整JVM参数、优化堆内存大小等措施解决了问题。建议在生产环境中合理设置JVM参数,避免资源浪费和性能问题。
22 3
|
23天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
66 5
|
26天前
|
负载均衡 Java 开发者
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
87 5
|
26天前
|
Prometheus 监控 Java
如何全面监控所有的 Spring Boot 微服务
如何全面监控所有的 Spring Boot 微服务
45 3
|
1月前
|
NoSQL Java API
springboot项目Redis统计在线用户
通过本文的介绍,您可以在Spring Boot项目中使用Redis实现在线用户统计。通过合理配置Redis和实现用户登录、注销及统计逻辑,您可以高效地管理在线用户。希望本文的详细解释和代码示例能帮助您在实际项目中成功应用这一技术。
41 4
|
1月前
|
消息中间件 NoSQL Java
Spring Boot整合Redis
通过Spring Boot整合Redis,可以显著提升应用的性能和响应速度。在本文中,我们详细介绍了如何配置和使用Redis,包括基本的CRUD操作和具有过期时间的值设置方法。希望本文能帮助你在实际项目中高效地整合和使用Redis。
58 2
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
116 9
|
2月前
|
缓存 NoSQL Java
Spring Boot与Redis:整合与实战
【10月更文挑战第15天】本文介绍了如何在Spring Boot项目中整合Redis,通过一个电商商品推荐系统的案例,详细展示了从添加依赖、配置连接信息到创建配置类的具体步骤。实战部分演示了如何利用Redis缓存提高系统响应速度,减少数据库访问压力,从而提升用户体验。
149 2