Go 实现插入排序算法及优化

简介: 本文首先对插入排序进行简单地介绍,通过图片来演示插入排序的过程,然后使用 Go 语言实现插入排序的算法。为减少算法中交换次数的逻辑,对算法进行优化,将交换的逻辑变成把前面的数往后移,最后将待排序的数插入到合适的位置即可。除了这种优化方式,还有一种改造方式:普通的算法往左查找的方式是线性查找,由于元素是有序的,因此线性查找可以换成二分查找,但是经过二分找到待插入的位置之后,也得移动前面的元素,相比上面的优化方法,还多了 O(logn) 的查找时间复杂度,因此我认为没有必要改造成二分查找。

耐心和持久胜过激烈和狂热。

哈喽大家好,我是陈明勇,本文分享的内容是使用 Go 实现插入排序算法。如果本文对你有帮助,不妨点个赞,如果你是 Go 语言初学者,不妨点个关注,一起成长一起进步,如果本文有错误的地方,欢迎指出!

插入排序

插入排序是一种简单的排序算法,以数组为例,我们可以把数组看成是多个数组组成。插入排序的基本思想是往前面已排好序的数组中插入一个元素,组成一个新的数组,此数组依然有序。光看文字可能不理解,让我们看看图示:

插入排序.png

插入排序的时间复杂度为 O(N²)。

算法实现

import (
    "fmt"
)
func main() {
    nums := [4]int{4, 1, 3, 2}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    InsertionSort(nums)
}
func InsertionSort(nums [4]int) {
    for i := 1; i < len(nums); i++ {
            for j := i; j > 0 && nums[j] < nums[j-1]; j-- {
                    nums[j], nums[j-1] = nums[j-1], nums[j]
            }
            fmt.Printf("第 %d 轮后:%v\n", i, nums)
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码

执行结果:

原数组: [4 1 3 2]
--------------------------------
第 1 轮后:[1 4 3 2]
第 2 轮后:[1 3 4 2]
第 3 轮后:[1 2 3 4]
--------------------------------
排序后的数组: [1 2 3 4]
复制代码
  • 第一层循环的 i 变量,表示待排序的元素;
  • 第二层循环:
  • j 变量的初值为 i 的值,由 j 变量往前去寻找待插入的位置;
  • 循环条件为 j > 0 && nums[j] < nums[j - 1]
  • j > 0 → 寻找到左边界则结束寻找;
  • nums[j] < nums[j - 1] → 左边元素小于待排序的元素则结束寻找;
  • 循环体为元素交换逻辑,只要满足循环条件,则不断交换元素,直到交换到待插入的位置,才终止。

算法优化

上面的代码,是通过不断地交换元素,直到无法交换,才能将元素放置到待插入的位置,为了避免频繁交换元素而导致效率低,将交换的逻辑变成把前面的数往后移,最后再将待排序的元素插入到合适的位置即可。

import (
    "fmt"
)
func main() {
    nums := [4]int{4, 1, 3, 2}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    InsertionSort(nums)
}
func InsertionSort(nums [4]int) {
    for i := 1; i < len(nums); i++ {
        t := nums[i]
        j := i
        for ; j > 0 && t < nums[j-1]; j-- {
            nums[j] = nums[j-1]
        }
        nums[j] = t
        fmt.Printf("第 %d 轮后:%v\n", i, nums)
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码
  • 用变量 t 记录待排序的元素,用 j 变量往前查找,只要前面的数比 t 大,那么就往后移,最后将 t 插入到合适的位置。

小结

  • 本文首先对插入排序进行简单地介绍,通过图片来演示插入排序的过程,然后使用 Go 语言实现插入排序的算法。为减少算法中交换次数的逻辑,对算法进行优化,将交换的逻辑变成把前面的数往后移,最后将待排序的数插入到合适的位置即可。
  • 除了这种优化方式,还有一种改造方式:普通的算法往左查找的方式是线性查找,由于元素是有序的,因此线性查找可以换成二分查找,但是经过二分找到待插入的位置之后,也得移动前面的元素,相比上面的优化方法,还多了 O(logn) 的查找时间复杂度,因此我认为没有必要改造成二分查找。
目录
相关文章
|
8天前
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
21 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
25天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
25天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
26天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
21 1
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
下一篇
无影云桌面