Go 实现选择排序算法及优化

简介: 本文简单介绍了什么是选择排序,然后通过图片的方式演示选择排序的过程,接下来是实现 O(N²) 时间复杂度的算法,最后优化算法,从结果来看,优化后的算法效率快了一倍,但是时间复杂度仍为 O(N²)。

耐心和持久胜过激烈和狂热。

哈喽大家好,我是陈明勇,本文分享的内容是使用 Go 实现选择排序算法。如果本文对你有帮助,不妨点个赞,如果你是 Go 语言初学者,不妨点个关注,一起成长一起进步,如果本文有错误的地方,欢迎指出!

选择排序

选择排序是一种简单的比较排序算法,它的算法思路是首先从数组中寻找最小(大)的元素,然后放到数组中的第一位,接下来继续从未排序的元素中寻找最小(大)元素,然后放到已排序元素的末尾,依次类推,直到所有元素被排序。

图片演示

未命名文件.png

普通算法

import "fmt"
func main() {
    nums := [8]int{8, 2, 3, 1, 6, 5, 7, 4}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    SelectionSort(nums)
}
func SelectionSort(nums [8]int) {
    for i := 0; i < len(nums)-1; i++ {
        minPos := i
        for j := i + 1; j < len(nums); j++ {
            if nums[minPos] > nums[j] {
                    minPos = j
            }
        }
        nums[i], nums[minPos] = nums[minPos], nums[i]
        fmt.Printf("第 %d 轮后:%v\n", i+1, nums)
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码

执行结果:

原数组: [8 2 3 1 6 5 7 4]
--------------------------------
第 1 轮后:[1 2 3 8 6 5 7 4]
第 2 轮后:[1 2 3 8 6 5 7 4]
第 3 轮后:[1 2 3 8 6 5 7 4]
第 4 轮后:[1 2 3 4 6 5 7 8]
第 5 轮后:[1 2 3 4 5 6 7 8]
第 6 轮后:[1 2 3 4 5 6 7 8]
第 7 轮后:[1 2 3 4 5 6 7 8]
--------------------------------
排序后的数组: [1 2 3 4 5 6 7 8]
复制代码
  • 升序排序。
  • 使用 i 变量表示最小元素的待放位置。
  • minPos 变量记录最小元素的的下标值,默认为 i
  • 通过变量 j 去寻找最小元素,ji + 1 的位置开始寻找。
  • 找到比 nums[minPos] 还小的元素,则将 j 的下标值赋给 minPos
  • 一轮下来,将最小元素的位置 minPosi 的位置互换,然后继续下一轮寻找,直到所有元素都被排序。
  • 该算法的时间复杂度为 O(N²)。

优化算法

普通算法是寻找最小值或最大值,然后放到指定位置。优化算法的改进点是同时寻找最小值和最大值。

import (
    "fmt"
)
func main() {
    nums := [4]int{3, 1, 4, 2}
    fmt.Println("原数组:", nums)
    fmt.Println("--------------------------------")
    SelectionSort(nums)
}
func SelectionSort(nums [4]int) {
    for left, right := 0, len(nums)-1; left <= right; {
        minPos := left
        maxPos := left
        for i := left + 1; i <= right; i++ {
            if nums[minPos] > nums[i] {
                minPos = i
            }
            if nums[maxPos] < nums[i] {
                maxPos = i
            }
        }
        nums[left], nums[minPos] = nums[minPos], nums[left]
        // 如果最大值刚好是在 left,待放最小值的位置,那么最大值就会被换走,所以需要判断一下
        if maxPos == left {
            maxPos = minPos
        }
        nums[right], nums[maxPos] = nums[maxPos], nums[right]
        fmt.Printf("第 %d 轮后:%v\n", left+1, nums)
        left++
        right--
    }
    fmt.Println("--------------------------------")
    fmt.Println("排序后的数组:", nums)
}
复制代码

执行结果:

原数组: [8 2 3 1 6 5 7 4]
--------------------------------
第 1 轮后:[1 2 3 4 6 5 7 8]
第 2 轮后:[1 2 3 4 6 5 7 8]
第 3 轮后:[1 2 3 4 5 6 7 8]
第 4 轮后:[1 2 3 4 5 6 7 8]
--------------------------------
排序后的数组: [1 2 3 4 5 6 7 8]
复制代码
  • left 变量表示待放最小值的位置,right 变量表示待放最大值的位置。minPos 记录最小值的下标值,maxPos 记录最大值的下标值,通过变量 i 去寻找最小值和最大值,寻找完毕后将它们进行交换。
  • 有一个注意的地方是,如果最大值刚好是在 left ,待放最小值的位置,那么最大值就会被换到 minPos 的位置,所以需要判断一下,纠正下标值。
  • 从执行结果来看,优化后的算法效率快了一倍,但是时间复杂度仍为 O(N²)。

小结

本文简单介绍了什么是选择排序,然后通过图片的方式演示选择排序的过程,接下来是实现 O(N²) 时间复杂度的算法,最后优化算法,从结果来看,优化后的算法效率快了一倍,但是时间复杂度仍为 O(N²)。

目录
相关文章
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现WOA智能鲸鱼优化算法优化支持向量机分类模型(SVC算法)项目实战
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
|
4天前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
8 3
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现WOA智能鲸鱼优化算法优化支持向量机回归模型(LinearSVR算法)项目实战
Python实现WOA智能鲸鱼优化算法优化支持向量机回归模型(LinearSVR算法)项目实战
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现SSA智能麻雀搜索算法优化支持向量机回归模型(SVR算法)项目实战
Python实现SSA智能麻雀搜索算法优化支持向量机回归模型(SVR算法)项目实战
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现SSA智能麻雀搜索算法优化支持向量机分类模型(SVC算法)项目实战
Python实现SSA智能麻雀搜索算法优化支持向量机分类模型(SVC算法)项目实战
|
4天前
|
机器学习/深度学习 数据采集 算法
Python实现GWO智能灰狼优化算法优化支持向量机回归模型(svr算法)项目实战
Python实现GWO智能灰狼优化算法优化支持向量机回归模型(svr算法)项目实战
|
2天前
|
算法 Python
`scipy.optimize`模块提供了许多用于优化问题的函数和算法。这些算法可以用于找到函数的最小值、最大值、零点等。
`scipy.optimize`模块提供了许多用于优化问题的函数和算法。这些算法可以用于找到函数的最小值、最大值、零点等。
8 0
|
2天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。