【数据结构】二叉树的顺序存储结构 —— 堆

简介: 【数据结构】二叉树的顺序存储结构 —— 堆

一、二叉树的顺序存储


二叉树的顺序结构存储是使用 数组存储


一般使用数组只适合表示 完全二叉树,因为完全二叉树最后一层连续且其它层均满,使用顺序存储不存在空间浪费

2a2d74a07242bf3a0746a42d283c1921.png

二叉树顺序存储在 物理 上是一个 数组,在 逻辑 上是一棵 二叉树


我们这篇博客学习的堆就是使用 顺序存储 来实现。




二、堆的概念和结构


   概念:如果有一个关键码的集合 K = {k0 , k1 , k2 , … , kn-1} ,把它的所有元素按完全二叉树的顺序存储方式存储在一 个一维数组中 ,并满足: Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >=K2i+2) i = 0 , 1 , 2… ,则称为小堆 ( 或大堆) 。(即双亲比孩子的数值小(大)——小(大)堆)将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。


堆分为 大堆 和 小堆 :


   大堆:树中所有父亲节点数据大于等于孩子节点数据

   小堆:树中所有父亲节点数据小于等于孩子节点数据


堆的性质:


   堆中某个节点的值总是不大于或不小于其父节点的值

   堆是一棵完全二叉树


说了这么多,其实判断是否为堆最好的方式就是 画图,画出堆构成的完全二叉树,看其是否符合性质。

image-20221120211655563.png



三、堆的实现



实现堆之前,我们需要了解一下概念:左孩子下标为奇数,右孩子下标为偶数


根据概念推导:


左孩子下标 = 2 * 双亲下标 + 1


右孩子下标 = 2 * 双亲下标 + 2


双亲下标 = (孩子下标 - 1) / 2 —— 这个式子是向下取整的,左右孩子都适用



1、结构的定义


堆是完全二叉树,其存储结构是顺序存储。那就和顺序表一样,将数据存在数组中,给定size 记录堆中元素个数,capacity 记录堆的最大容量。

typedef int HPDataType;
typedef struct Heap
{
  HPDataType* a; // 存储数据的空间
  int size; // 大小
  int capacity; // 容量
}HP;


本篇博客默认实现的是 小堆


2、接口总览

void HeapPrint(HP* php); // 打印
void HeapInit(HP* php); // 初始化
void HeapDestroy(HP* php); // 销毁
void HeapPush(HP* php, HPDataType x); // 堆尾插入数据
void HeapPop(HP* php); // 删除堆顶数据
HPDataType HeapTop(HP* php); // 取堆顶数据
int HeapSize(HP* hp); // 计算大小
bool HeapEmpty(HP* hp); // 判空
void AdjustUp(HPDataType* a, int child); // 向上调整
void AdjustDown(HPDataType* a, int n, int parent); // 向下调整


3、初始化

堆的初始化和顺序表是一样的,因为我们用的就是顺序存储:

void HeapInit(HP* php)
{
  assert(php);
  php->a = NULL;
  php->size = php->capacity = 0;
}



4、销毁

堆的销毁只要释放空间,然后把 size 和 capacity 置0就可以。

void HeapDestroy(HP* php)
{
  assert(php);
  free(php->a);
  php->a = NULL;
  php->size = php->capacity = 0;
}


5、插入


堆的插入就是在 数组尾部 的插入,就是 数组 的 尾插


堆插入数据只会在尾部,所以无需封装接口用来扩容,直接判断是否要扩容就可以。


堆在插入数据后,需要保持堆的结构,之前是小/大堆,在插入数据后也应该是小/大堆。当插入数据后,如果破坏了结构,就需要 向上调整


void HeapPush(HP* php, HPDataType x)
{
  assert(php);
  // 检查容量
  if (php->size == php->capacity)
  {
    int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      exit(-1);
    }
    php->a = tmp;
    php->capacity = newcapacity;
  }
  // 插入元素
  php->a[php->size++] = x;
  // 向上调整
  AdjustUp(php->a, php->size - 1);
}


6、向上调整


我们默认实现为 小堆,于是堆的插入就可能会造成 两种情况

  1. 插入数据 大于 它的 父亲 ,插入后,仍然为小堆,这种情况无需调整:


84c91088d3dbec9b18480dd1037160c0.png


插入数据 小于 它的 祖先(从根到该节点所经分支上的所有节点,就是它的父亲,爷爷等),插入后,不为小堆,此时需要将 插入数据需要向上调整,直到它为小堆:


684d5eb02466b70b5fdd9dfd35fd40ec.png


理清了这两个情况,再梳理一下细节:


向上调整,肯定是以 孩子为基准,孩子调整到堆顶就代表着向上调整结束了。如果使用父亲为基准的话,是非正常结束的(孩子调整到0没有结束,而是通过比较值后,break退出的)。


而中间的过程就是判断孩子是否小于父亲,如果小于就交换它们的值,然后将孩子迭代为父亲,再重新计算父亲,继续调整上方;如果孩子大于等于父亲,就退出,无需调整。


通过不断向上调整元素,就可以构建出来 小堆。


void Swap(HPDataType* p1, HPDataType* p2)
{
  assert(p1 && p2);
  HPDataType tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
  assert(a);
  // 求父亲
  int parent = (child - 1) / 2;
  // 默认小堆
  while (child > 0)
  {
        // 如果孩子小于父亲,调整
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]); // 交换
      child = parent; // 孩子迭代为父亲
      parent = (child - 1) / 2; // 重新计算父亲
    }
    else
    {
      break;
    }
  }
}


建大堆 只要修改一下条件:

if (a[child]) > a[parent]



7、删除


堆的 删除 为删除 堆顶的数据


对于删除来说,有两个方案:


   直接头删


   交换 堆顶 和 堆底 元素,尾删堆底元素,将堆顶元素 向下调整。(堆底元素就是数组尾部的元素)。

我们先看看 方案一 可不可行:


首先,由于堆是顺序存储的,那么 头删就要挪动数据,时间复杂度就为O(N)。其次,这样会 完全打乱关系。


举个例子,假设 15 和 18 在第二层原本是兄弟,但是由于头删,15到了堆顶,变成了 18 的父亲。关系就乱了,感情也就淡了(doge)。18 表示 我拿你当兄弟,你却想当我父亲。但是就这一对的话,还能忍忍,但是全部的父子关系都被破坏了,所以肯定不可行。


所以,方案一就被否决了,那就只能使用 方案二 了:


方案二的话就很好,删除元素前,交换了堆顶和堆底的元素,然后将堆底尾删,尾删的时间复杂度只有O(1)。通过向下调整对堆顶元素 下调 时,也不会破坏过多的关系。


void HeapPop(HP* php)
{
  assert(php);
  assert(php->size > 0); // 堆空不能删
  // 交换堆顶和最后一个节点的值
  Swap(&php->a[0], &php->a[php->size - 1]);
  // 尾删
  php->size--;
  AdjustDown(php->a, php->size, 0); // 向下调整
}


8、向下调整

向下调整的步骤为:


  1. 找到左右孩子中的 小孩子
  2. 判断 父亲 是否大于 小孩子,如果是则交换,不是则退出
  3. 交换后将 父亲迭代到大孩子的位置,重新计算孩子。

注意找最大孩子的时候,大孩子必须存在,小心越界。


向下调整的 循环条件孩子下标 < 堆的大小,如果继续调整就越界了。

c0d4206a6f2a7da5dcab5624e19b07d2.png

void Swap(HPDataType* p1, HPDataType* p2)
{
  assert(p1 && p2);
  HPDataType tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
void AdjustDown(HPDataType* a, int n, int parent)
{
  // 假设最小孩子
  int minchild = 2 * parent + 1;
  while (minchild < n)
  {
    // 找最小孩子
    if (minchild + 1 < n && a[minchild + 1] < a[minchild])
    {
      minchild++;
    }
        // 如果父亲大于孩子,调整
    if (a[parent] > a[minchild])
    {
      Swap(&a[parent], &a[minchild]); // 交换
      parent = minchild; // 迭代
      minchild = 2 * parent + 1;
    }
    else
    {
      break;
    }
  }
}


调大堆 只要改变两个条件:

if (minchild + 1 < n && a[minchild + 1] > a[minchild]) // 找大孩子
if (a[parent] < a[minchild]) // 如果父亲小于孩子,则交换
相关文章
|
8月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
283 10
 算法系列之数据结构-二叉树
|
10月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
306 12
|
10月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
191 10
|
10月前
|
存储 算法 C++
【C++数据结构——图】图的邻接矩阵和邻接表的存储(头歌实践教学平台习题)【合集】
本任务要求编写程序实现图的邻接矩阵和邻接表的存储。需掌握带权有向图、图的邻接矩阵及邻接表的概念。邻接矩阵用于表示顶点间的连接关系,邻接表则通过链表结构存储图信息。测试输入为图的顶点数、边数及邻接矩阵,预期输出为Prim算法求解结果。通关代码提供了完整的C++实现,包括输入、构建和打印邻接矩阵与邻接表的功能。
417 10
|
10月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
456 3
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1023 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
291 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
123 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
510 77

热门文章

最新文章