全景剖析阿里云容器网络数据链路(五):Terway ENI-Trunking

简介: 本篇文章主要聚焦ACK 在Terway ENI-Trunking模式下,不同SOP场景下的数据链路转发路径。

本系列文章由余凯执笔创作,联合作者:阿里云容器服务 谢石 对本文亦有贡献


近几年,企业基础设施云原生化的趋势越来越强烈,从最开始的IaaS化到现在的微服务化,客户的颗粒度精细化和可观测性的需求更加强烈。容器网络为了满足客户更高性能和更高的密度,也一直在高速的发展和演进中,这必然对客户对云原生网络的可观测性带来了极高的门槛和挑战。为了提高云原生网络的可观测性,同时便于客户和前后线同学增加对业务链路的可读性,ACK产研和AES联合共建,合作开发ack net-exporter和云原生网络数据面可观测性系列,帮助客户和前后线同学了解云原生网络架构体系,简化对云原生网络的可观测性的门槛,优化客户运维和售后同学处理疑难问题的体验 ,提高云原生网络的链路的稳定性。


鸟瞰容器网络,整个容器网络可以分为三个部分:Pod网段,Service网段和Node网段。这三个网络要实现互联互通和访问控制,那么实现的技术原理是什么?整个链路又是什么,限制又是什么呢?Flannel, Terway有啥区别?不同模式下网络性能如何?这些,需要客户在下搭建容器之前,就要依据自己的业务场景进行选择,而搭建完毕后,相关的架构又是无法转变,所以客户需要对每种架构特点要有充分了解。比如下图是个简图,Pod网络既要实现同一个ECS的Pod间的网络互通和控制,又要实现不同ECS Pod间的访问, Pod访问SVC 的后端可能在同一个ECS 也可能是其他ECS,这些在不同模式下,数据链转发模式是不同的,从业务侧表现结果也是不一样的。


1.png


本文是[全景剖析容器网络数据链路]第五部分部分,主要介绍Kubernetes Terway ENI-Trunking模式下,数据面链路的转转发链路,一是通过了解不同场景下的数据面转发链路,从而探知客户在不同的场景下访问结果表现的原因,帮助客户进一步优化业务架构;另一方面,通过深入了解转发链路,从而在遇到容器网络抖动时候,客户运维以及阿里云同学可以知道在哪些链路点进行部署观测手动,从而进一步定界问题方向和原因。


系列一:全景剖析阿里云容器网络数据链路(一)—— Flannel

系列二:全景剖析阿里云容器网络数据链路(二)—— Terway ENI

系列三:全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP

系列四:全景剖析阿里云容器网络数据链路(四)—— Terway IPVLAN+EBPF

系列六:全景剖析阿里云容器网络数据链路(六)—— ASM Istio (To be continued)


Terway ENI-Trunking 模式架构设计


弹性网卡中继Trunk ENI是一种可以绑定到专有网络VPC类型ECS实例上的虚拟网卡。相比弹性网卡ENI,Trunk ENI的实例资源密度明显提升。启用Terway Trunk ENI功能后,指定的Pod将使用Trunk ENI资源。为Pod开启自定义配置是可选功能,默认情况下创建的Pod,未开启Terway Trunk ENI功能,使用的是共享ENI上的IP地址。只有当您主动声明为指定Pod开启自定义配置后,相应的Pod才能使用Pod自定义配置能力,Terway才可以同时使用共享ENI以及Trunk ENI为Pod分配IP。两种模式共享节点最大Pod数量配额,总部署密度和开启前一致。


金融、电信,政府等行业对数据信息安全有着非常严格的数据安全要求,通常,重要的核心数据会放在自建的机房内,并且对访问此数据的客户端有严格的白名单控制,通常会限制具体的IP访问源。业务架构上云时,往往是通过专线,VPN等打通自建机房和云上资源打通,由于传统容器中PodIP 是不固定的,NetworkPolicy 只能在集群内生效,这对客户的白名单设置有了非常大的挑战。ENI 在 Trunk 模式下,可以配置独立的安全组、vSwitch能力,带来更为细化的网络配置能力,提供极具竞争力的容器网络解决方案。


2.png


在trunking的命名空间内可以看到相关的pod信息和节点信息,其中pod应用的IP 的网络我们稍后会详细说明


3.png4.png5.png


Pod内有只有指向eth0的默认路由,说明Pod访问任何地址段都是从eth0为统一的出入口


6.png


那么Pod是如何ECS OS进行通信呢?在OS层面,我们一看到calicxxxx的网卡,可以看到是附属于eth1的,对于节点和Pod的通信连接,这个类似于《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 ,此处不再进行过多说明。通过OS Linux Routing 我们可以看到,所有目的是 Pod IP 的流量都会被转发到Pod对应的calico虚拟往卡上,到这里为止,ECS OS 和Pod的网络命名空间已经建立好完整的出入链路配置了。


7.png8.png


让我们把目光聚焦ENI Trunking本身。ENI Truning 是如何实现Pod的交换机和安全组的配置呢?Terway增加一种名为PodNetworking的自定义资源来描述网络配置。您可以创建多个PodNetworking,来规划不同网络平面。创建PodNetworking资源后,Terway将同步网络配置信息,只有status成为Ready后,该网络资源才能对Pod生效。如下图所示,类型为Elastic,只要namespce的标签的符合tryunking:zoneb, 就给pod使用指定的安全组和交换机。


9.png


创建Pod时,Pod将通过标签去匹配PodNetworking。如果Pod没有匹配到任何PodNetworking,则Pod将使用默认的共享ENI上的IP。如果Pod有匹配到PodNetworking,则将使用PodNetworking中定义的配置分配ENI。关于Pod标签的相关内容,请参见标签


Terway会为这类Pod创建相应的名为PodENI的自定义资源,用于跟踪Pod所使用的资源,该资源由Terway管理,您不可修改该资源。如下trunking 命名空间下的centos-59cdc5c9c4-l5vf9 pod匹配了相应的podnetworking设置,被分配了相应的memeber ENI、对应的Trunking ENI,安全组,交换机和被绑定的ECS实例,这样就实现了Pod维度的交换机,安全组的配置和管理。


10.png


通过ECS的控制台,我们也可以清楚的看到memenber ENI和Trunking ENI 之间的关系,相应的安全组交换机等等信息。


11.png12.png


通过上面的配置,我们了解如何去给每个Pod单独配置交换机,安全组等信息,让每个pod在通过Trunking ENI出ECS后,可以自动走到对应的配置Member ENI 上,让这些配置生效。那么所有的配置其实落到宿主机上都是通过相关的策略实现的,Trunking ENi网卡是如何知道把对应Pod的流量转发到正确的对应的Member ENI上的呢?这其实通过的vlan来实现的。在tc层面可以看到VLAN ID。所以在egress或者ingress的阶段会打上或者去除VLAN ID。


13.png


故Terway ENI-Trunking 模式总体可以归纳为:


  • 弹性网卡中继Trunk ENI是一种可以绑定到专有网络VPC类型ECS实例上的虚拟网卡。相比弹性网卡ENI,Trunk ENI的实例资源密度明显提升
  • Terway Trunk ENI支持为每个Pod配置固定IP、独立的虚拟交换机、安全组,能提供精细化流量管理、流量隔离、网络策略配置和IP管理能力。
  • 使用Terway插件,您需要选择较高规格和较新类型的ECS神龙机型,即5代或者6代的8核以上机型,且机型要支持Trunk ENI。更多信息,请参见实例规格族
  • 单节点所支持的最大Pod数取决于该节点的弹性网卡(ENI)数。共享ENI支持的最大Pod数=(ECS支持的ENI数-1)×单个ENI支持的私有IP数。
  • Pod安全组规则不会应用到同节点Pod间流量及同节点上节点与Pod间流量。如果您需要限制,可以通过NetworkPolicy进行配置。
  • Pod和对应MemeberENI流量对应是通过VLAN  ID 来实现的。


Terway ENI-Trunking 模式容器网络数据链路剖析


可以看到由于可以实现Pod维度的安全组,交换机设置,那么宏观上不同链路访问必然更加趋于复杂,我们可以将Terway ENI-TRunking模式下的网络链路大体分为以Pod IP对外提供服务和以SVC对外提供服务两个大的SOP场景,进一步细分,可以归纳为10个不同的小的SOP场景。


14.png


对这11个场景的数据链路梳理合并,这些场景可以归纳为下面10类典型的场景:


  • 通节点访问Pod(相同or不同安全组)
  • 同节点同安全组Trunk Pod互访(含访问SVC IP,源端和svc后端部署在同一节点)
  • 同节点不同安全组Trunk Pod互访(含访问SVC IP,源端和svc后端部署在同一节点)
  • 不同节点同安全组Trunk Pod互访
  • 不同节点不同安全组Trunk Pod互访
  • 集群内源端访问SVC IP(源端和SVC后端不同节点,相同安全组,含Local模式访问external IP)
  • 集群内源端访问SVC IP(源端和SVC后端不同节点,不同安全组,含Local模式访问external IP)
  • Cluster模式下,集群内源端访问SVC ExternalIP(源端和SVC后端不同节点,不同安全组)
  • Cluster模式下,集群内源端访问SVC ExternalIP(源端和SVC后端不同节点,相同安全组)
  • 集群外访问SVC IP


2.1 场景一:通节点访问Pod(相同or不同安全组)


环境


15.png


cn-hongkong.10.0.4.22 节点上存在 nginx-6f545cb57c-kt7r8和 10.0.4.30


内核路由


nginx-6f545cb57c-kt7r8  IP地址 10.0.4.30  ,该容器在宿主机表现的PID是1734171,该容器网络命名空间有指向容器eth0的默认路由


16.png17.png


该容器eth0在ECS OS 内是通过ipvlan隧道的方式和ECS的附属ENI eth1建立的隧道,同时附属ENI eth1还有个虚拟的calxxx 网卡


18.png19.png


在ECS OS内,有指向Pod IP,下一跳为为calixxxx的路由,通过前文可以知道calixxx网卡是和每个pod内的veth1组成的pair,所以,pod内访问SVC的CIDR会有指向veth1的路由,不会走默认的eth0路由。故:calixx网卡在这里的主要作用是用于:1. 节点访问Pod 2. 当节点或者Pod访问 SVC的CIDR时,会走ECS OS内核协议栈转换,走到calixxx和veth1访问pod。


20.png


trunking 命名空间下的nginx-6f545cb57c-kt7r8  pod匹配了相应的podnetworking设置,被分配了相应的memeber ENI、对应的Trunking ENI,安全组,交换机和被绑定的ECS实例,这样就实现了Pod维度的交换机,安全组的配置和管理。


21.png


在tc层面可以看到VLAN ID 1027,所以数据流量在egress或者ingress的阶段会打上或者去除VLAN ID。


22.png


ENI的网卡所属的安全组可以看到只允许了指定的IP可以访问nginx pod的80 端口。


23.png


置于数据面流量在OS层面的流量转发逻辑,这个类似于《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 ,不在这里做过多的叙述。


小结


可以访问到目的端


24.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS的ns中命中Ip rule 被转发1、
  • 整个请求链路是 ECS1  OS -> calixxxx -> ECS1 Pod1
  • 因为是通过 os内核routing转发,不经过 member eni,所以安全组不生效,此链路与pod所属的member eni的安全组无关


2.2 场景二:同节点同安全组Trunk Pod互访(含访问SVC IP,源端和svc后端部署在同一节点)


环境


25.png


cn-hongkong.10.0.4.22 节点上存在 nginx-6f545cb57c-kt7r8,10.0.4.30和busybox-87ff8bd74-g8zs7,10.0.4.24。


内核路由


nginx-6f545cb57c-kt7r8  IP地址 10.0.4.30  ,该容器在宿主机表现的PID是1734171,该容器网络命名空间有指向容器eth0的默认路由


26.png27.png


该容器eth0在ECS OS 内是通过ipvlan隧道的方式和ECS的附属ENI eth1建立的隧道,同时附属ENI eth1还有个虚拟的calixxxx  网卡


28.png29.png


在ECS OS内,有指向Pod IP,下一跳为为calixxxx的路由,通过前文可以知道calixxx网卡是和每个pod内的veth1组成的pair,所以,pod内访问SVC的CIDR会有指向veth1的路由,不会走默认的eth0路由。故:calixx网卡在这里的主要作用是用于:1. 节点访问Pod 2. 当节点或者Pod访问 SVC的CIDR时,会走ECS OS内核协议栈转换,走到calixxx和veth1访问pod。


30.png


trunking 命名空间下的busybox-87ff8bd74-g8zs7 和 nginx-6f545cb57c-kt7r8  pod匹配了相应的podnetworking设置,被分配了相应的memeber ENI、对应的Trunking ENI,安全组,交换机和被绑定的ECS实例,这样就实现了Pod维度的交换机,安全组的配置和管理。


31.png32.png


在tc层面可以看到VLAN ID 1027,所以数据流量在egress或者ingress的阶段会打上或者去除VLAN ID。


33.png


ENI的网卡所属的安全组可以看到只允许了指定的IP可以访问nginx pod的80 端口。


34.png


置于数据面流量在OS层面的流量转发逻辑,这个类似于《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 ,不在这里做过多的叙述。


小结


可以访问到目的端


35.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 整个请求链路是ECS1 Pod1 eth0 -> cali1xxxxxx-> cali2xxxxxx -> ECS1 Pod2 eth0
  • pod属于 同or不同 ENI,链路请求是一致的,不经过ENI
  • 因为是通过 os内核 routing 转发,不经过 member eni,所以安全组不生效,此链路与pod所属的member eni的安全组无关
  • 访问Pod IP 和访问 SVC IP(external ipor clusterip)的区别是:


访问SVC IP, SVC 会在源端pod eth0和calixxx网卡捕捉到,在目的端pod的eth0和calixxx时捕捉不到


2.3 场景三:同节点不同安全组Trunk Pod互访(含访问SVC IP,源端和svc后端部署在同一节点)


环境


36.png


cn-hongkong.10.0.4.244 节点上存在 nginx-96bb9b7bb-wwrdm,10.0.5.35 和centos-648f9999bc-nxb6l,10.0.5.18。


内核路由


相关的Pod的容器网络命名空间,路由等不在进行过多描述,详情可以见前面两小节。


通过podeni可以看到centos-648f9999bc-nxb6l 所分配的ENI,安全组sg,交换机vsw等.


37.png


通过安全组sg-j6ccrxxxx可以看到centos 的pod可以访问外部所有的地址


38.png


同理,可以查看出服务端Pod的nginx-96bb9b7bb-wwrdm 的安全组 sg-j6ccrze8utxxxxx 是只允许192.168.0.0/16 可以访问


39.png40.png


小结


可以访问到目的端


41.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 整个请求链路是ECS1 Pod1 eth0 -> cali1xxxxxx-> cali2xxxxxx -> ECS1 Pod2 eth0
  • pod属于 同or不同 ENI,链路请求是一致的,不经过ENI
  • 因为是通过 os内核 routing 转发,不经过 member eni,所以安全组不生效,此链路与pod所属的member eni的安全组无关
  • 访问Pod IP 和访问 SVC IP(external ipor clusterip)的区别是:


访问SVC IP, SVC 会在源端pod eth0和calixxx网卡捕捉到,在目的端pod的eth0和calixxx时捕捉不到


2.4 场景四:不同节点同安全组Trunk Pod互访


环境


42.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27

cn-hongkong.10.0.4.22  节点上存在服务端 nginx-6f545cb57c-kt7r8  和IP 10.0.4.30


内核路由


相关的Pod的容器网络命名空间,路由等不在进行过多描述,详情可以见前面两小节。通过podeni可以看到centos-59cdc5c9c4-l5vf9 所分配的ENI,安全组sg,交换机vsw等.


通过安全组sg-j6cf3sxrlbuwxxxxx可以看到centos和nginx的 的pod属于同一个安全组 sg-j6cf3sxrlbuxxxxx。


43.png44.png


小结


是否可以访问取决于安全组配置


45.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 出ECS后,根据要访问的pod和该pod ENI所属vswitch,命中VPC路由规则或者直接VSW上的二层转发;
  • 整个请求链路是 ECS1 Pod1 eth0 -> cali1xxx > Trunk eni ( ECS1) -> Pod1 member eni -> vpc route rule(如有) -> Pod2 member eni -> > Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0
  • 因为是通过os内核 routing 转发,经过 member eni,因为member eni属于同一个安全组,所以安全组内默认是互通的


2.5 场景五:不同节点不同安全组Trunk Pod互访


环境


46.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27

cn-hongkong.10.0.4.244   节点上存在服务端 nginx-96bb9b7bb-wwrdm 和IP 10.0.5.35


内核路由


相关的Pod的容器网络命名空间,路由等不在进行过多描述,详情可以见前面两小节。通过podeni可以看到centos-59cdc5c9c4-l5vf9 所分配的ENI,安全组sg,交换机vsw等。


通过安全组sg-j6cf3sxrlbuwxxxxx可以看到centos 的pod可以访问外部所有的地址


47.png48.png


同理,可以查看出服务端Pod的nginx-96bb9b7bb-wwrdm 的安全组 sg-j6ccrze8utxxxxx 是只允许192.168.0.0/16 可以访问


49.png50.png


小结


是否可以访问取决于安全组配置


51.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 整个请求链路是ECS1 Pod1 eth0 -> cali1xxx > Trunk eni ( ECS1) -> Pod1 member eni -> vpc route rule(如有) -> Pod2 member eni -> > Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0
  • 因为是通过os内核routing转发,流量会经过member eni, 是否可以访问成功,安全组配置对此有着决定性的作用。


2.6 场景六:集群内源端访问SVC IP(源端和SVC后端不同节点,相同安全组,含Local模式访问external IP)


环境


52.png53.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27cn-hongkong.10.0.4.22  节点上存在服务端 nginx-6f545cb57c-kt7r8  和IP 10.0.4.30

nginx 的svc的ClusterIP是 192.168.81.92  External IP是 8.210.162.178


内核路由


ENI-Trunking相比较ENIIP来说,只是在VPC侧增加了对应的Truning和Member ENI,在OS内并无区别,此处可以参考《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 2.4 小节


小结


是否可以访问取决于安全组配置


54.png

数据链路转发示意图

  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 出ECS后,根据要访问的pod和该pod ENI所属vswitch,命中VPC路由规则或者直接VSW上的二层转发;
  • 整个请求链路是


去方向:ECS1 Pod1 eth0 -> cali1xxx > ECS eth0 -> Pod1 member eni -> vpc route rule(如有) -> Pod2 member eni -> Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0


回方向:ECS2 Pod1 eth0 -> Trunk eni ( ECS2) cali2 xxx -> Pod2 member eni -> vpc route rule(如有) -> Pod1 member eni -> Trunk eni ( ECS1) -> cali1xxx -> ECS1 Pod1 eth0


  • 经过ipvs规则fnat转化, 数据包是以源pod IP 从ECS eth0 出,请求目的pod IP。(访问SVC clusterIP,以及Local模式下访问External IP)
  • 这个经过的ENI有 ECS1 的eth0, Pod1 member eni,Pod2 member eni。所以这三个网卡的安全组的配置都会影响数据链路的连通性


2.7 场景七:集群内源端访问SVC IP(源端和SVC后端不同节点,不同安全组,含Local模式访问external IP)


环境


55.png56.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27cn-hongkong.10.0.4.244   节点上存在服务端 nginx-96bb9b7bb-wwrdm 和IP 10.0.5.35


nginx 的svc的ClusterIP是 192.168.31.83  External IP是 47.243.87.204


内核路由


ENI-Trunking相比较ENIIP来说,只是在VPC侧增加了对应的Truning和Member ENI,在OS内并无区别,此处可以参考《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 2.4 小节


小结


是否可以访问取决于安全组配置


57.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 出ECS后,根据要访问的pod和该pod ENI所属vswitch,命中VPC路由规则或者直接VSW上的二层转发;
  • 整个请求链路是


去方向:ECS1 Pod1 eth0 -> cali1xxx > ECS eth0 -> Pod1 member eni -> vpc route rule(如有) -> Pod2 member eni -> Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0


回方向:ECS2 Pod1 eth0 -> Trunk eni ( ECS2) cali2 xxx -> Pod2 member eni -> vpc route rule(如有) -> Pod1 member eni -> Trunk eni ( ECS1) -> cali1xxx -> ECS1 Pod1 eth0


  • 经过ipvs规则fnat转化, 数据包是以源pod IP 从ECS eth0 出,请求目的pod IP。(访问SVC clusterIP,以及Local模式下访问External IP)
  • 这个经过的ENI有 ECS1 的eth0, Pod1 member eni,Pod2 member eni。所以这三个网卡的安全组的配置都会影响数据链路的连通性。需要保证 安全组互相放通Pod和ECS的响应IP


2.8 场景八:Cluster模式下,集群内源端访问SVC ExternalIP(源端和SVC后端不同节点,不同安全组)


环境


58.png59.png60.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27cn-hongkong.10.0.4.244   节点上存在服务端 nginx-96bb9b7bb-wwrdm 和IP 10.0.5.35


nginx 的svc的ClusterIP是 192.168.31.83  External IP是 47.243.87.204, ExternalTrafficPolicy 是 Cluster模式


内核路由


ENI-Trunking相比较ENIIP来说,只是在VPC侧增加了对应的Truning和Member ENI,在OS内并无区别,此处可以参考《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 2.5 小节


小结


是否可以访问取决于安全组配置


61.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 出ECS后,根据要访问的pod和该pod ENI所属vswitch,命中VPC路由规则或者直接VSW上的二层转发;
  • 整个请求链路是ECS1 Pod1 eth0 -> cali1xxx > ECS eth0 ->  vpc route rule(如有) -> Pod2 member eni -> Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0
  • 经过ipvs规则fnat转化, 数据包是以源pod IP 从ECS eth0 出,请求目的pod IP。(访问SVC clusterIP,以及Local模式下访问External IP)
  • 这个经过的ENI有 ECS1 的eth0,Pod2 member eni。所以这两个网卡的安全组的配置都会影响数据链路的连通性。需要保证 安全组互相放通Pod和ECS的响应IP


2.9 场景九:Cluster模式下,集群内源端访问SVC ExternalIP(源端和SVC后端不同节点,相同安全组)


环境


62.png63.png64.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27cn-hongkong.10.0.4.22  节点上存在服务端 nginx-6f545cb57c-kt7r8  和IP 10.0.4.30


nginx 的svc的ClusterIP是 192.168.81.92  External IP是 8.210.162.178 ExternalTrafficPolicy为Cluster


内核路由


ENI-Trunking相比较ENIIP来说,只是在VPC侧增加了对应的Truning和Member ENI,在OS内并无区别,此处可以参考《全景剖析阿里云容器网络数据链路(三)—— Terway ENIIP》 2.5 小节


小结


是否可以访问取决于安全组配置


65.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 整个链路不会和请求不会经过pod所分配的ENI,直接在OS 的ns中命中 Ip rule 被转发
  • 出ECS后,根据要访问的pod和该pod ENI所属vswitch,命中VPC路由规则或者直接VSW上的二层转发;
  • 整个请求链路是ECS1 Pod1 eth0 -> cali1xxx > ECS eth0 ->  vpc route rule(如有) -> Pod2 member eni -> Trunk eni ( ECS2) cali2 xxx  -> ECS2 Pod1 eth0
  • 经过ipvs规则fnat转化, 数据包是以源pod IP 从ECS eth0 出,请求目的pod IP。(访问SVC clusterIP,以及Local模式下访问External IP)
  • 这个经过的ENI有 ECS1 的eth0,Pod2 member eni。所以这两个网卡的安全组的配置都会影响数据链路的连通性。需要保证 安全组互相放通Pod和ECS的响应IP


2.10 场景十:集群外访问SVC IP


环境


66.png67.png68.png


cn-hongkong.10.0.4.20 节点上存在客户端 centos-59cdc5c9c4-l5vf9 和IP 10.0.4.27cn-hongkong.10.0.4.22  节点上存在服务端 nginx-6f545cb57c-kt7r8  和IP 10.0.4.30


nginx 的svc的ClusterIP是 192.168.81.92  External IP是 8.210.162.178 ExternalTrafficPolicy为Cluster


SLB相关配置


在SLB控制台,可以看到 lb-j6cmv8aaojf7nqdai2a6a 虚拟服务器组的后端服务器组是两个后端nginx pod 的的ENI eni-j6cgrqqrtvcwhhcyuc28, eni-j6c54tyfku5855euh3db 和 eni-j6cf7e4qnfx22mmvblj0,这几个ENI 都是member ENI


69.png70.png


小结


否可以访问取决于安全组配置


71.png

数据链路转发示意图


  • 会经过calicao网卡,每个非hostnetwork的pod会和calicao网卡形成veth pair,用于和其他pod或node进行通信
  • 数据链路:client ->  SLB  -> Pod Member ENI + Pod Port  -> Trunking ENI ->  ECS1 Pod1 eth0
  • ExternalTrafficPolicy 为Local或Cluster模式下, SLB只会将 pod分配的member ENI挂在到SLB的虚拟服务器组
  • SLB转发请求只会转发到目标member ENI上,然后通过vlan发送到Trunk ENI,再由Trunk ENI 转发到 POD


总结


本篇文章主要聚焦ACK 在Terway ENI-Trunking模式下,不同SOP场景下的数据链路转发路径。伴随着客户对业务网络的更精细化的管理需求,引入了Pod维度交换机和安全组配置设置,在Terway ENI-Trunking模式下,一共可以分为10个SOP场景,并对这些场景技术实现原理,云产品配置等一一梳理并总结,这对我们遇到Terway ENI-Trunking架构下的链路抖动、最优化配置,链路原理等提供了初步指引方向。在Terway ENI-Trunking模式下,利用veth pair来联通宿主机和pod的网络空间,pod的地址是来源于弹性网卡的辅助IP地址,并且节点上需要配置策略路由来保证辅助IP的流量经过它所属的弹性网卡,通过此种方式可以实现ENI多Pod共享,大大提升了Pod的部署密度,同时利用tc egress/ingress 在数据流输入ECS时候,打上或者去除VLAN tag,以便实现数据流量能真正的走到属于他的Member ENI网卡,从而实现精细化的管理。目前微服务越来越盛行,采用sidecar的方式,让每个pod都可以成为一个网络节点,从而实现pod中不同的流量实现不同的网络行为和可观测性,下一系列我们将进入到Terway ENIIP模式的全景解析最后一章——《全景剖析阿里云容器网络数据链路(六)—— ASM Istio》。

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
467 0
|
6月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
224 0
|
7月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
213 0
|
8月前
|
Python
LBA-ECO CD-32 通量塔网络数据汇编,巴西亚马逊:1999-2006,V2
该数据集汇集了1999年至2006年间巴西亚马逊地区九座观测塔的碳和能量通量、气象、辐射等多类数据,涵盖小时至月度时间步长。作为第二版汇编,数据经过协调与质量控制,扩展了第一版内容,并新增生态系统呼吸等相关计算数据,支持综合研究与模型合成。数据以36个制表符分隔文本文件形式提供,配套PDF说明文件,适用于生态与气候研究。引用来源为Restrepo-Coupe等人(2021)。
250 1
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
229 0
|
5月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
627 2
|
5月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
7月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
212 4
|
8月前
|
开发者
鸿蒙仓颉语言开发教程:网络请求和数据解析
本文介绍了在仓颉开发语言中实现网络请求的方法,以购物应用的分类列表为例,详细讲解了从权限配置、发起请求到数据解析的全过程。通过示例代码,帮助开发者快速掌握如何在网络请求中处理数据并展示到页面上,减少开发中的摸索成本。
鸿蒙仓颉语言开发教程:网络请求和数据解析
|
10月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
299 22