【数字逻辑 | 组合电路基础】电路基础知识

简介: 【数字逻辑 | 组合电路基础】电路基础知识

👉引言💎


学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。 热爱写作,愿意让自己成为更好的人............

铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉


一、引言


ASCLL码对照表


1 模拟信号:无限连续信号


image.png

在传输过程中可能会严重失真,但数字信号仍然可以保持0或1,近似完美的对原始信号进行存储与复原


2 数字信号:离散有限值


image.png

优越性:

  • 只有1、0两种信号;具有两个稳态的元件,均可表示0 / 1两个数码.
  • 抗干扰能力强,可靠性和准确性高;
  • 可编程性(HDL 硬件描述语言);
  • 可进行各种算术运算和逻辑运算,具有一定的“逻辑思维”能力,易于实现各种控制和决策应用系统;
  • 数字信号便于存储、传输和压缩;
  • 集成度高,通用性强


3 模数的互相转换


image.png


4 数字硬件电路


  • 标准芯片
    可以实现常用逻辑电路的一些芯片:具有精心设计的逻辑功能和物理结构,设计者可以选取若干芯片,也可以定义互连来实现更大规模的逻辑电路。 缺点:效率低下、芯片功能固定不变
  • 可编程逻辑器件(PLD)
    经用户配置后可实现众多不同逻辑功能电路的芯片:具有可编程开关集合,用户可以选择合适的开关结构实现特定的功能。最常用的PLD是FPGA

image.png


  • 全(半)定制芯片(专用芯片)


  • 首先设计芯片需要的逻辑电路,然后由工艺厂进行芯片制造。根据特定任务优化电路设计,可以获得比FPGA更好的性能 缺点:制造成本高、制造过程时间长


5 进制转换:


  • 整数部分除 2 取余,逆序排列
  • 小数部分乘 2 取整,顺序排列
  • 二进制的小数转换为十进制
  • 乘以2的负次方,从小数点后开始,依次乘以2的负一次方,2的负二次方,2的负三次方等


  • 十进制小数转二进制


image.png


二进制小数转十进制


image.png


6 应用场景


  • 通过远程控制器上的拨码开关,将 相应标码 转换为 二进制,只有当 控制器的频率编码通道值 与 拨码开关的值匹配时,电扇才能运作 *

image.png

  • 温度传感器以二进制输出温度值,系统读出的温度值以 ASCII 码表示,用**“F”** 表示 冰点(freezing (0-32))以下,“B” 表示沸点以上( boiling (212 or more)),“N” 表示正常值(normal),显示器将ASCII 码转换成对应的字母显示出来image.png
  • 无线射频识别器 (RFID tag)是一个自动响应射频信号的芯片,即自动发送一个识别数字的唯一信号。用8位十六进制数表示比32位二进制数 表示错误率更小

image.png


二、数字逻辑电路导论:


1 布尔代数 运算公式.


image.pngimage.pngimage.png

  • 最后两个证明

image.png

image.png


  • 对偶式


• 变 +, 1 变 0
再不改变运算顺序的情况下,互为对偶式的两式等价

  • 注意 无中生有法 的使用:积中 乘1,和中 +0


2 门电路综合的一般步骤


  1. 逻辑抽象-列真值表-写出对应的逻辑表达式(可化简)
    其实就是将题目输入与输出 以代数的形式自然表现出来,即相当于主析取范式的成真赋值,并且那些极小项就是题目中输出1的组合;也可以 取主析取范式的成假赋值,最后取反
  2. 选择合适的门电路进行综合
  3. 测试电路,验证是否符合要求


3 门电路综合例题


1 二进制加法器


image.png

2  三通道点灯控制器

image.pngimage.pngimage.pngimage.png

3 与或 —> 与非
减少了电路中门的种类
image.png
同理:或与 —> 或非image.png


4 最小项(积之和)与最大项(和之积)


最小项性质


  1. 在输入变量的任何组合的取值下必有一个最小项,并且仅有一个最小项的值为1 ;如:三变量x=1、y=0、z=1时, xy'z =1
  2. 全体最小项之和为1,主西去范式分成任意两份,一定是1 和 0,也就是F与F',(因为组成的所有最小项中在一次组合下仅有一个为1,其他都为0)
  3. 任意两个最小项乘积为0
  4. 若两个最小项只有一个因子不同,称他们具有相邻性。具有相邻性的最小项之和可以合并成一项,并消去一对因子
  • 因为函数的组成形式确定,不确定的是对应的输入组合,所以有以上条件成立,注意所有最小项在任 一 组合情况下 是无法同时满足为1的


最大项性质


  1. 在输入变量的任何组合的取值下必有一个最大项,并且仅有一个最大项的值为0 ;
  2. 全体最大项之积为0
  3. 任意两个最大项之和为1
  4. 若两个最小项只有一个因子不同,称他们具有相邻性。具有相邻性的最小项之和可以合并成一项,并消去一对因子
  • 根据德摩根定律,下标相同的最小项与最大项为互补关系: Mi= m'i
  • eg:

image.png

评价逻辑电路成本的指标:电路中逻辑门总数+所有逻辑门输入数的总数

image.png

有时候实际问题中 认为 非门的成本与输入门成本差不多,故不计算非门的成本


卡诺图


  • 卡诺图 简化函数:


反函数(最大项与最小项的取反转化)

image.pngimage.png


  • 注意事项


image.pngimage.png


  • 蕴含项:
    蕴含项  就是 卡诺图里能够得到的所有不同形状的圈
    质蕴含项 就是 不能变得更大的卡诺圈
    若某蕴涵项中删去任意一个字符不再是一个有效蕴涵项,称为质蕴涵项
    包含有不被其他任何质蕴涵项所包含的最小项。对应卡诺圈包含了不可能被其他任何卡诺圈包含的1方格。 基本质项是不可去掉的与项,但不是全部的与项
    如果消去字符 是蕴含项 就是说 扩大圈仍然是个卡诺圈

image.png

  • eg:

image.png

🌹写在最后💖: 路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹


相关文章
|
芯片
通讯电平转换电路中的经典设计
通讯电平转换电路中的经典设计
88 0
|
存储 缓存 算法
m基于FPGA的交织解交织系统verilog实现,包含testbench
m基于FPGA的交织解交织系统verilog实现,包含testbench
307 0
|
编译器 芯片 异构计算
【数字逻辑 | 组合电路基础】Verilog语法
【数字逻辑 | 组合电路基础】Verilog语法
【数字逻辑 | 组合电路基础】Verilog语法
|
人工智能 BI C语言
5.2.1_电路的基本原理、加法器设计
计算机组成原理之电路的基本原理、加法器设计
325 0
5.2.1_电路的基本原理、加法器设计
|
算法 异构计算
分层次的电路设计方法
⭐本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。
131 0
分层次的电路设计方法
数字逻辑电路设计实验:加法器
数字逻辑电路设计实验:加法器
113 0
一款设计和模拟数字逻辑电路的LogiSim工具
Logisim是一种用于设计和模拟数字逻辑电路的教育工具。凭借其简单的工具栏界面和构建它们时的电路仿真,它非常简单,有助于学习与逻辑电路相关的最基本概念。由于能够从较小的子电路构建更大的电路,并通过鼠标拖动来绘制电线束。
371 0
HDLBits练习汇总-08-组合逻辑设计测试--加法器电路
HDLBits练习汇总-08-组合逻辑设计测试--加法器电路
180 0
HDLBits练习汇总-08-组合逻辑设计测试--加法器电路
如何设计恒流源输出电路?
如何设计恒流源输出电路?
如何设计恒流源输出电路?