Python标准模块:importlib详解

简介: Python标准模块:importlib详解

1.模块简介

Python提供了importlib包作为标准库的一部分。目的就是提供Python中import语句的实现(以及__import__函数)。另外,importlib允许程序员创建他们自定义的对象,可用于引入过程(也称为importer)。

什么是imp?
另外有一个叫做imp的模块,它提供给Python import语句机制的接口。这个模块在Python 3.4中被否决,目的就是为了只使用importlib。

这个模块有些复杂,因此我们在这篇博文中主要讨论以下几个主题:

  • 动态引入
  • 检查模块是否可以被引入
  • 引入源文件自身
  • 第三方模块 import_from_github_com

2.模块使用

动态引入

importlib模块支持传入字符串来引入一个模块。我们创建两个简单的模块来验证这个功能。我们将会给予两个模块相同的接口,让它们打印名字以便我们能够区分它们。创建两个模块,分别为foo.py和bar.py,代码如下所示,

def main():
   print(__name__)12

现在我们使用importlib来引入它们。让我们看看这段代码如何去做的。确保你已经把这段代码放在与上面创建的两个模块相同的目录下。

import importlib

def dynamic_import(module):
    return importlib.import_module(module)

if __name__ == "__main__":
    module = dynamic_import('foo')
    module.main()

    module_two = dynamic_import('bar')
    module_two.main()1234567891011

在这段代码中,我们手动引入importlib模块,并创建一个简单的函数dynamic_import。这个函数所做的就是调用importlib模块中的import_module函数,入参就是我们传入的字符串,然后返回调用结果。在代码段的下面,我们调用每个模块的main方法,将会打印出每个模块的名称。

在你的代码中,你可能不会大量这样做。当你只有一个字符串时,如果你想引入这个模块,importlib就允许你可以这么做。

模块引入检查

Python有一个编码规范就是EAPP:Easier to ask for forgiveness than permision。意思就是经常假设一些事情是存在的(例如,key在词典中),如果出错了,那么就捕获异常。你可以看 Python标准模块–import 文章中我们尝试引入模块,当它不存在时,我们就会捕获到ImportError。如果我们想检查并观察一个模块是否可以引入而不是仅仅是猜测,该如何去做?你可以使用importlib。代码如下:

import importlib.util
import importlib


def check_module(module_name):
    module_spec = importlib.util.find_spec(module_name)
    if module_spec is None:
        print("Module :{} not found".format(module_name))
        return None
    else:
        print("Module:{} can be imported!".format(module_name))
        return module_spec


def import_module_from_spec(module_spec):
    module = importlib.util.module_from_spec(module_spec)
    module_spec.loader.exec_module(module)
    return module


if __name__ == "__main__":
    module_spec = check_module("fake_module")
    module_spec = check_module("collections")
    if (module_spec):
        module = import_module_from_spec(module_spec)
        print(dir(module))1234567891011121314151617181920212223242526

这里我们引入importlib模块的子模块util。在check_module函数中,我们调用find_spec函数来检查传入的字符串作为模块是否存在。首先,我们传入一个假的名称,然后我们传入一个Python模块的真实名称。如果你运行这段代码,你将会看到你传入一个没有安装的模块的名称,find_spec函数将会返回None,我们的代码将会打印出这个模块没有找到。如果找到了,我们就会返回模块的说明。

我们可以获取到模块的说明,然后使用它来真正的引入模块。或者你可以将字符串传入到import_module函数中,正如我们在2.1节中所学习到的一样。但是我们已经学习到如何使用模块的说明。让我们看一下上述代码中的import_module_from_spec函数。它接受由check_module函数返回的模块说明。我们将其传入到module_from_spec函数,它将会返回引入的模块。Python的官方文档推荐,在引入模块后执行它,所以我们下一步做的就是调用exec_module函数。最后我们返回这个模块,并且运行Python的dir函数来确认这个我们就是我们所期望的。

从源文件中引入

在这一节中,我想说明importlib的子模块util还有另外一个技巧。你可以使用util通过模块名和文件路径来引入一个模块。示例如下所示,

import importlib.util

def import_source(module_name):
    module_file_path = module_name.__file__
    module_name = module_name.__name__

    module_spec = importlib.util.spec_from_file_location(module_name ,module_file_path)
    module = importlib.util.module_from_spec(module_spec)
    module_spec.loader.exec_module(module)
    print(dir(module))

    msg = "The {module_name} module has the following methods:{methods}"
    print(msg.format(module_name = module_name ,methods = dir(module)))

#学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
if __name__ == "__main__":
    import logging
    import_source(logging)1234567891011121314151617

上述代码中,我们实际引入了logging模块,并将它传入到import_source函数。在这个函数中,我们首先获取到模块的实际路径和名称。然后我们将这些信息传入到util的spec_from_file_location函数中,这个将会返回模块的说明。一旦我们获取到模块的说明,我们就可以使用与2.2节相同的importlib机制来实际引入模块。
现在让我们来看一个精巧的第三方库,Python的__import__()函数直接引入github中的包。

import_from_github_com

这个精巧的包叫做import_from_github_com,它可以用于发现和下载github上的包。为了安装他,你需要做的就是按照如下命令使用pip,

pip install import_from_github_com1

这个包使用了PEP 302中新的引入钩子,允许你可以从github上引入包。这个包实际做的就是安装这个包并将它添加到本地。你需要Python 3.2或者更高的版本,git和pip才能使用这个包。

一旦这些已经安装,你可以在Python shell中输入如下命令,

>>> from github_com.zzzeek import sqlalchemy
Collecting git+https://github.com/zzzeek/sqlalchemy
Cloning https://github.com/zzzeek/sqlalchemy to /tmp/pip-acfv7t06-build
Installing collected packages: SQLAlchemy
Running setup.py install for SQLAlchemy ... done
Successfully installed SQLAlchemy-1.1.0b1.dev0
>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__spec__': None,
'__package__': None, '__doc__': None, '__name__': '__main__',
'sqlalchemy': <module 'sqlalchemy' from '/usr/local/lib/python3.5/site-packages/\
sqlalchemy/__init__.py'>,
'__loader__': <class '_frozen_importlib.BuiltinImporter'>}123456789101112

你如果看了import_from_github_com的源码,你将会注意到它并没有使用importlib。实际上,它使用了pip来安装那些没有安装的包,然后使用Python的import()函数来引入新安装的模块。这段代码非常值得学习。

3.总结

到这里,你已经了解到在你的代码中如何使用importlib和引入钩子。当然还有很多超出本文所覆盖的知识,如果你需要写一个自定义的引入器或者下载器,你需要花费很多时间来阅读官方文档和源码。

相关文章
|
2月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
61 4
|
24天前
|
Python
Python Internet 模块
Python Internet 模块。
121 74
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
123 63
|
2月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
3天前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
18 3
|
2月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
2月前
|
JSON Linux 数据格式
Python模块:从入门到精通,只需一篇文章!
Python中的模块是将相关代码组织在一起的单元,便于重用和维护。模块可以是Python文件或C/C++扩展,Python标准库中包含大量模块,如os、sys、time等,用于执行各种任务。定义模块只需创建.py文件并编写代码,导入模块使用import语句。此外,Python还支持自定义模块和包,以及虚拟环境来管理项目依赖。
Python模块:从入门到精通,只需一篇文章!
|
2月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
48 5
|
2月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
2月前
|
Python
在Python中,可以使用内置的`re`模块来处理正则表达式
在Python中,可以使用内置的`re`模块来处理正则表达式
71 5
下一篇
开通oss服务