七、【计算】Presto架构原理与优化介绍(上) | 青训营笔记

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 七、【计算】Presto架构原理与优化介绍(上) | 青训营笔记

👉引言💎


学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。 热爱写作,愿意让自己成为更好的人............


铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉


学习内容


本节课程主要分为四个方面:

  1. 介绍大数据与 OLAP 的演进之路,并简单介绍 Presto 的设计理念
  2. 介绍 Presto 的基础概念与原理,加深对Presto基础概念的理解
  3. 对 Presto 的特色和重要机制进行讲解和剖析
  4. 基于实际工作中遇到的case,介绍 Presto 常用的优化工具,以及 Presto 在字节内部的相关优化


名词解析


1 大数据与OLAP概念概述


大数据

OLAP


2 Presto 基础概念-服务


  • Coordinator(负责调度):
  • 解析SQL语句
  • ⽣成执⾏计划
  • 分发执⾏任务给Worker节点执⾏
  • Worker
    在一个presto集群中,存在一个coordinator节点和多个worker节点,coordinator节点是管理节点,而worker节点就是工作节点,在每个worker节点上都会存在一个worker服务进程,该服务进程主要进行数据的处理以及task的执行,worker服务进程每隔一定的时间都会向coordinator上的服务发送心跳,接受调度。当客户端提交一个查询的时候,coordinator则会从当前存活的worker列表中选择出适合的worker节点去运行task,而worker在执行每个task的时候又会进一步对当前task读入的每个split进行一系列的操作和处理
  • Discovery Service(将coordinator和woker结合到一起的服务):
  • Worker节点启动后向Discovery Server服务注册
  • Coordinator从Discovery Server获得Worker节点
  • 所有的worker都把自己注册到Discovery Server上,Discovery Server是一个发现服务的service,Discovery Server发现服务之后,coordinator便知道在集群中有多少个worker能够工作,分配工作到worker时便有了根据


3 Presto基础概念-数据源


  • Connector
    Presto通过Connector来支持多数据源,一个Connector代表一种数据源,如Hive Connector代表了对Hive数据源的支持。可以认为Connector是由Presto提供的适配多数据源的统一接口
  • Catalog
    针对不同的数据源,Connector和Catalog是一一对应的关系,Catalog包含了schema和data source的映射关系。
    Presto基础概念-Query部分
  • Query
    基于SQL parser后获得的执行计划
  • Stage
    根据是否需要shuffle将Query拆分成不同的subplan,每一个subplan便是一个stage
  • Fragment
    基本等价于Stage,属于在不同阶段的称呼,在本门课程可以认为两者等价
  • Task
    单个 Worker 节点上的最小资源管理单元: 在一个节点上, 一个 Stage 只有一个 Task, 一个 Query 可能有多个Task
  • Pipeline
    Stage 按照 LocalExchange 切分为若干 Operator 集合, 每个 Operator 集合定义一个 Pipeline
  • Driver
    Pipeline 的可执行实体 , Pipeline 和 Driver 的关系可类比 程序和进程 ,是最小的执行单元,通过 火山迭代模型执行每一个Operator
  • Split
    输入数据描述(数据实体是 Page), 数量上和 Driver 一一对应,不仅代表实际数据源split,也代表了不同stage间传输的数据
  • Operator
    最小的物理算子
    Presto基础概念-数据传输部分
  • Exchange
    表示不同 Stage 间的数据传输,大多数意义下等价于 Shuffle
  • LocalExchange
    Stage内的 rehash 操作,常用于提高并行处理数据的能力(Task在presto中只是最小的容器,而不是最小的执行单元)


一、概述


0 大数据与OLAP


  • 什么是大数据


image.png

在信息化时代背景下,由于信息交互,信息存储,信息处理能力大幅增加而产生的数据

  • 什么是OLAP
    OLAP (OnLine Analytical Processing) 对业务数据执行多维分析,并提供复杂计算,趋势分析和复杂数据建模的能力。是许多商务智能(BI)应用程序背后的技术。现如今OLAP已经发展为基于数据库通过SQL对外提供分析能力
  • OLAP 对比 MapReduce
    MapReduce代表了抽象的物理执行模型,使用门槛较高
    与Mapreduce Job 相比, OLAP 引擎常通过 SQL 的形式,为数据分析、数据开发人员提供统一的逻辑描述语言,实际的物理执行由具体的引擎进行转换和优化
  • OLAP核心概念:

image.png

  • 维度
  • 度量

常见的OLAP引擎:

  • 预计算引擎:Kylin,Druid
  • 批式处理引擎:Hive,Spark
  • 流式处理引擎:Flink
  • 交互式处理引擎: Presto,Clickhouse,Doris


1 Presto设计理念


Presto最初是由facebook研发的构建于Hadoop/HDFS系统之上的PB级交互式分析引擎,其具有如下的特点:

  • 多租户任务的管理与调度
  • 多数据源联邦查询
  • 支持内存化计算
  • pipeline式数据处理


2 设计思想


基于Presto进行的二次开发:

Prestodb

Trino

Openlookeng

🌹写在最后💖: 路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
7天前
|
网络协议 Java 应用服务中间件
框架源码私享笔记(01)Tomcat核心架构功能 | 配置详解
本文首先分享了《活出意义来》一书序言中的感悟,强调成功如同幸福,不是刻意追求就能得到,而是全心投入时的副产品。接着探讨了Tomcat的核心功能与架构解析,包括网络连接器(Connector)和Servlet容器(Container),并介绍了其处理HTTP请求的工作流程。文章还详细解释了Tomcat的server.xml配置文件,涵盖了从顶级容器Server到子组件Connector、Engine、Host、Context等的配置参数及作用,帮助读者理解Tomcat的内部机制和配置方法。
|
7天前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
38 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
12天前
|
存储 人工智能 缓存
DeepSeek 开源周第三弹!DeepGEMM:FP8矩阵计算神器!JIT编译+Hopper架构优化,MoE性能飙升
DeepGEMM 是 DeepSeek 开源的专为 FP8 矩阵乘法设计的高效库,支持普通和混合专家(MoE)分组的 GEMM 操作,基于即时编译技术,动态优化矩阵运算,显著提升计算性能。
119 3
DeepSeek 开源周第三弹!DeepGEMM:FP8矩阵计算神器!JIT编译+Hopper架构优化,MoE性能飙升
|
1月前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
|
13天前
|
人工智能 Java 数据处理
Java高级应用开发:基于AI的微服务架构优化与性能调优
在现代企业级应用开发中,微服务架构虽带来灵活性和可扩展性,但也增加了系统复杂性和性能瓶颈。本文探讨如何利用AI技术,特别是像DeepSeek这样的智能工具,优化Java微服务架构。AI通过智能分析系统运行数据,自动识别并解决性能瓶颈,优化服务拆分、通信方式及资源管理,实现高效性能调优,助力开发者设计更合理的微服务架构,迎接未来智能化开发的新时代。
|
2月前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
3月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
4月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
91 3
|
4月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
3月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
350 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型

热门文章

最新文章