六、【计算】大数据Shuffle原理与实践(下) | 青训营笔记

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 六、【计算】大数据Shuffle原理与实践(下) | 青训营笔记

👉引言💎


学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。 热爱写作,愿意让自己成为更好的人............

铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉


四、Push Shuffle


0 概述


  • 为什么需要Push Shuffle,因为一般shuffle过程存在不可避免的问题:
  • 数据存储在本地磁盘,没有备份
  • IO 并发:大量 RPC 请求(M*R)
  • IO 吞吐:随机读、写放大(3X)
  • GC 频繁,影响 NodeManager
  • 为了优化该问题,有很多公司都做了思路相近的优化,push shuffle


1 Magnet主要流程


  • Spark driver组件,协调整体的shuffle操作
  • map任务的shuffle writer过程完成后,增加了一个额外的操作push-merge,将数据复制份推到远程shuffle服务上
  • magnet shuffle service是一个强化版的ESS。将隶属于同一个shuffle partition的block,会在远程传输到magnet后被merge到一个文件中
  • reduce任务Amagnet shuffle service 接收合并好的shuffle数据image.png


2 实现原理:


  • bitmap: 存储Emerge的mapper id, 防止重复merge
  • position offset: 如果本次block没有正常merge,可以恢复到上一个block的位置
  • currentMapld: 标识当前正在append的block,保证不同mapper 的block能依次append

image.png

主要为边写边push的模式,在原有的shuffle基础上尝试push聚合数据,但并不强制完成,读取时优先读取push聚合的结果,对于没有来得及完成聚合或者聚合失败的情况,则fallback到原模式


3 Magnet 可靠性


  • 如果Map task输出的Block没有成功Push到magnet上,并且反复重试仍然失败,则reducetask直接从ESS上拉取原始block数据
  • 如果magnet上的block因为重复或者冲突等原因,没有正常完成merge的过程,则reducetask直接拉取未完成merge的block
  • 如果reduce拉取已经merge好的block失败,则会直接拉取merge前的原始block
  • 本质上, magnet中维护了两份shuffle数据的副本


4 Cloud Shuffle Service 思想


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-82JnEti8-1661440964552)(image/image_vN88KGZRLN.png)]


5 Cloud Shuffle Service架构


image.png


6 Cloud Shuffle Service 读写流程


  • 写入

image.png

  • 读取image.png


  • Cloud Shuffle Service 支持AQE

image.png
一个Partition会最终对应到多个Epoch file, 每个EPoch 目前设置是512MB


五、总结


  1. Shuffle 概述:
  • 数据shuffle的概念,其存在的意义以及基本流程
  • Shuffle为什么对性能影响很重要
  1. Shuffle算子
  • 常见的Shuffle算子
  • 理解宽依赖与窄依赖,ShuffleDependency及其相关组件
  1. shuffle过程
  • Spark中shuffle实现的历史
  • Spark中主流版本的shuffle写入和读取过程
  1. Push shuffle
  • Magnet Push Shuffle的设计思路
  • Cloud Shuffle Service 的设计实现思路


问题:


  1. 自己构造一个会产生shuffle 的spark作业,修改shuffle相关的参数,对比一下不同参数对作业运行的影响
  2. 在spark中shuffle实现的发展过程中,每一次变化都优化了之前哪些缺点,又带来了哪些问题?
  3. Push Shuffle相对比Fetch Shuffle最大的挑战是什么?

🌹写在最后💖: 路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
20天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
20天前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
1月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
53 3
|
1月前
|
消息中间件 分布式计算 druid
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
40 2
|
1月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
76 0
|
1月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
58 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
57 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
8天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
67 7
|
8天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
23 2
下一篇
无影云桌面