基于 Kubernetes 的企业级大数据平台,EMR on ACK 技术初探

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
容器镜像服务 ACR,镜像仓库100个 不限时长
云原生网关 MSE Higress,422元/月
简介: 通过阿里云容器服务 ACK 运行开源大数据任务,将以集群为中心的视角切换成以作业为中心视角,还可以实现在线业务、AI、大数据统一接入 ACK 集群,错峰调度,离线在线混部,提升机器利用率。并且,实现了运维入口、运维工具链、监控体系的三重统一。此外,还支持多版本,如同时运行 Spark2.x 和 Spark 3.x 任务。

作者:容器服务团队


云上大数据的 Kubernetes 技术路线


当前,大数据与机器学习领域颇为关注存储与计算分离架构,逐渐向云原生演进。以Spark 为例,云下或自有服务器可以选择 Hadoop 调度支持 Spark,云上的 Spark 则会考虑如何充分享有公共云的弹性资源、运维管控和存储服务等,并且业界也涌现了不少 Spark on Kubernetes 的优秀实践。


1.png


大数据云原生化面临的挑战


存储和计算分离的架构,同时又带来挑战,例如:怎样构建以阿里云对象存储 OSS 为底座的 HDFS 文件系统?需要完全兼容现有的 HDFS,还要实现在性能对标 HDFS的同时降低成本;计算引擎 shuffle 数据存算分离,又要考虑如何解决 ACK 混合异构机型的支持问题,以及业界非常关注如何支持 Spark 动态资源。


引入 Kubernetes 之后, 如何调度优化性能瓶颈?性能对标 Yarn、实现多级队列管理。还有,如何借助 K8s,编排组织各种业务的波峰波谷,实现错峰调度?等等。


通过阿里云容器服务 ACK 运行开源大数据任务,将以集群为中心的视角切换成以作业为中心视角,还可以实现在线业务、AI、大数据统一接入 ACK 集群,错峰调度,离线在线混部,提升机器利用率。并且,实现了运维入口、运维工具链、监控体系的三重统一。此外,还支持多版本,如同时运行 Spark2.x 和 Spark 3.x 任务。


EMR on ACK 的架构与优势


12月,阿里云 EMR 2.0 正式发布,从平台体验、数据开发、资源形态、分析场景等方面实现全面创新。其中在资源形态侧,EMR 可以部署在阿里云容器服务 ACK 平台, 减少对底层集群资源的运维投入,以便于用户更加专注大数据任务本身。


EMR on ACK 为用户提供了全新的构建大数据平台的方式,用户可以将开源大数据服务部署在阿里云容器服务(ACK)上。利用 ACK 在服务部署和对高性能可伸缩的容器应用管理的能力优势,用户只需要专注在大数据作业本身。用户可以便捷地将 Spark、Presto、Flink 作业执行在 ACK 集群上,100%兼容开源,性能优于开源。


EMR on ACK 架构如下


2.png


  • 轻量化管控,对接已有数据平台
  • 通过数据开发集群/调度平台提交到不同的执行平台
  • 错峰调度,根据业务高峰低峰策略调整
  • 云原生数据湖架构,ACK 弹性扩缩容能力强
  • ACK 管理异构机型集群,灵活性好


EMR on ACK 具备以下优势


  • Remote Shuffle Service 提供中间 shuffle 数据的存储计算分离方案
  • 可以使计算节点无需本地盘和云盘
  • 支持打开 Spark 动态资源功能,Spark-25299
    终极方案
  • JindoFS 针对 OSS 存储提供湖加速解决方案
  • Block 模式1TB TPCDS 场景下有15%以上的性能提升
  • 调度层面支持 Scheduler Framework V2
  • 调度性能比社区提升3x以上
  • 提供多级队列管理
  • 引擎能力增强
  • 10TB TPCDS Benchmark 场景下,EMR Spark
    比社区有3x性能提升
  • Hudi、DeltaLake 比社区功能性能增强
  • 完整的错峰调度方案


国内知名广告营销服务商汇量科技已使用 EMR 产品4年。在业务快速增长的大好形势下,汇量科技面临越来越多的困扰:如数据来源复杂、数据量大、数据维度多、实时运营业务秒级数据新鲜度需求等业务需求;本次升级后,汇量科技在素材平台、热力引擎等业务的大数据平台搭建上,数据同步和及查询效率有数倍提升,系统稳定性显著提升,未再出现之前cpu、mem、io负载高等情况。

EMR on ACK

https://help.aliyun.com/document_detail/280450.html


点击此处移步阿里云 EMR 2.0 发布会,了解更多

相关实践学习
使用ACS算力快速搭建生成式会话应用
阿里云容器计算服务 ACS(Container Compute Service)以Kubernetes为使用界面,采用Serverless形态提供弹性的算力资源,使您轻松高效运行容器应用。本文将指导您如何通过ACS控制台及ACS集群证书在ACS集群中快速部署并公开一个容器化生成式AI会话应用,并监控应用的运行情况。
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
Kubernetes Devops 应用服务中间件
基于 Azure DevOps 与阿里云 ACK 构建企业级 CI/CD 流水线
本文介绍如何结合阿里云 ACK 与 Azure DevOps 搭建自动化部署流程,涵盖集群创建、流水线配置、应用部署与公网暴露,助力企业高效落地云原生 DevOps 实践。
277 0
|
5月前
|
存储 SQL 分布式计算
19章构建企业级大数据平台:从架构设计到数据治理的完整链路
开源社区: 贡献者路径:从提交Issue到成为Committer 会议演讲:通过DataWorks Summit提升影响力 标准制定: 白皮书撰写:通过DAMA数据治理框架认证 专利布局:通过架构设计专利构建技术壁垒
|
4月前
|
SQL 存储 机器学习/深度学习
基于 Dify + Hologres + QWen3 进行企业级大数据的处理和分析
在数字化时代,企业如何高效处理和分析海量数据成为提升竞争力的关键。本文介绍了基于 Dify 平台与 Hologres 数据仓库构建的企业级大数据处理与分析解决方案。Dify 作为开源大语言模型平台,助力快速开发生成式 AI 应用;Hologres 提供高性能实时数仓能力。两者结合,不仅提升了数据处理效率,还实现了智能化分析与灵活扩展,为企业提供精准决策支持,助力数字化转型。
682 2
基于 Dify + Hologres + QWen3 进行企业级大数据的处理和分析
|
9月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
459 12
|
9月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
本教程演示如何在ACK中使用vLLM框架快速部署DeepSeek R1模型推理服务。
|
9月前
|
Kubernetes 持续交付 数据库
阿里云ACK+GitLab企业级部署实战教程
GitLab 是一个功能强大的基于 Web 的 DevOps 生命周期平台,整合了源代码管理、持续集成/持续部署(CI/CD)、项目管理等多种工具。其一体化设计使得开发团队能够在同一平台上进行代码协作、自动化构建与部署及全面的项目监控,极大提升了开发效率和项目透明度。 GitLab 的优势在于其作为一体化平台减少了工具切换,高度可定制以满足不同项目需求,并拥有活跃的开源社区和企业级功能,如高级权限管理和专业的技术支持。借助这些优势,GitLab 成为许多开发团队首选的 DevOps 工具,实现从代码编写到生产部署的全流程自动化和优化。
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
1017 0
|
存储 大数据 数据处理
解锁时间旅行新姿势!EMR DeltaLake 如何让你在大数据海洋中畅游历史,重塑决策瞬间?
【8月更文挑战第26天】DeltaLake是由DataBricks公司开源的大数据存储框架,专为构建高效的湖仓一体架构设计。其特色功能Time-Travel查询允许用户访问数据的历史版本,极大增强了数据处理的灵活性与安全性。通过独特的文件结构和日志管理机制,DeltaLake实现了数据版本控制。用户可通过指定时间戳或版本号查询历史数据。
187 2
|
存储 大数据 数据处理
Delta Lake革新浪潮:EMR中的数据湖守护者,如何重塑大数据生态?
【8月更文挑战第26天】Delta Lake是一款开源大数据处理框架,以数据版本控制和ACID事务特性著称,在大数据领域崭露头角。在阿里云EMR平台上,它为用户提供高效可靠的数据处理方式,通过结构化的存储、事务日志实现数据版本控制和回滚。Delta Lake在EMR中实现了ACID事务,简化数据湖操作流程,支持时间旅行查询历史数据版本,优化存储格式提高读取速度,这些优势使其在开源社区和企业界获得广泛认可。
237 2
|
存储 分布式计算 大数据
阿里云 EMR 强势助力,与阿里云大数据体系共创辉煌,把握时代热点,开启生态建设之旅
【8月更文挑战第26天】阿里云EMR(Elastic MapReduce)是一种大数据处理服务,与阿里云的多个服务紧密结合,共同构建了完善的大数据生态系统。EMR与对象存储服务(OSS)集成,利用OSS提供可靠、低成本且可扩展的数据存储;与MaxCompute集成,实现深度数据分析和挖掘;还支持数据湖构建服务,加速数据湖的搭建并简化数据管理与分析过程。EMR提供多种编程接口及工具,如Hive、Spark和Flink等,帮助用户高效完成大数据处理任务。
437 2

相关产品

  • 容器服务Kubernetes版