四数之和 (LeetCode 18)

简介: 四数之和 (LeetCode 18)

四数之和 (LeetCode 18)

Description

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

0 <= a, b, c, d < n

a、b、c 和 d 互不相同

nums[a] + nums[b] + nums[c] + nums[d] == target

你可以按 任意顺序 返回答案 。

Sample Input 1

nums = [1,0,-1,0,-2,2], target = 0

Sample Output 1

[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

Sample Input 2

nums = [2,2,2,2,2], target = 8

Sample Output 2

[[2,2,2,2]]

Tips

  • 1 <= nums.length <= 200
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109

算法思想:

四数之和,和15.三数之和是一个思路,都是使用双指针法, 基本解法就是在三数之和的基础上再套一层for循环。

但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

三数之和的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。

那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于三数之和双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。

四数相加II是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!

双指针法将时间复杂度:O(n^2)的解法优化为 O(n)的解法。也就是降一个数量级,

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int k = 0; k < nums.size(); k++) {
            // 剪枝处理
            if (nums[k] > target && nums[k] >= 0) {
                break; // 这里使用break,统一通过最后的return返回
            }
            // 对nums[k]去重
            if (k > 0 && nums[k] == nums[k - 1]) {
                continue;
            }
            for (int i = k + 1; i < nums.size(); i++) {
                // 2级剪枝处理
                if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
                    break;
                }

                // 对nums[i]去重
                if (i > k + 1 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while (right > left) {
                    // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
                    if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    // nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
                    } else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {
                        left++;
                    } else {
                        result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                        // 找到答案时,双指针同时收缩
                        right--;
                        left++;
                    }
                }

            }
        }
        return result;
    }
};

补充:

二级剪枝的部分:

if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
    break;
}

可以优化为:

if (nums[k] + nums[i] > target && nums[i] >= 0) {
    break;
}

因为只要 nums[k] + nums[i] > target,那么 nums[i] 后面的数都是正数的话,就一定 不符合条件了。

不过这种剪枝 其实有点 小绕,大家能够理解 文章给的完整代码的剪枝 就够了。

Java代码代码如下:

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> result = new ArrayList<>();
        Arrays.sort(nums);
       
        for (int i = 0; i < nums.length; i++) {
        
            // nums[i] > target 直接返回, 剪枝操作
            if (nums[i] > 0 && nums[i] > target) {
                return result;
            }
        
            if (i > 0 && nums[i - 1] == nums[i]) {    // 对nums[i]去重
                continue;
            }
            
            for (int j = i + 1; j < nums.length; j++) {

                if (j > i + 1 && nums[j - 1] == nums[j]) {  // 对nums[j]去重
                    continue;
                }

                int left = j + 1;
                int right = nums.length - 1;
                while (right > left) {
            // nums[k] + nums[i] + nums[left] + nums[right] > target int会溢出
                    long sum = (long) nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum > target) {
                        right--;
                    } else if (sum < target) {
                        left++;
                    } else {
                        result.add(Arrays.asList(nums[i], nums[j], nums[left], nums[right]));
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                        left++;
                        right--;
                    }
                }
            }
        }
        return result;
    }
}

Created by Ss1Two on 2023/2/9

目录
相关文章
|
3月前
【LeetCode 17】5.7四数之和
【LeetCode 17】5.7四数之和
34 1
|
3月前
Leetcode第十八题(四数之和)
这篇博客介绍了LeetCode第18题“四数之和”的解法,通过排序和双指针技术来找出数组中所有和为特定值的四个不同元素的组合。
20 0
|
5月前
|
算法
LeetCode第18题四数之和
该文章介绍了 LeetCode 第 18 题四数之和的解法,与三数之和类似,通过先排序,再用双指针确定坐标并去重的方式解决,关键是确定四个坐标,前两个通过两层循环确定,后两个通过首尾双指针确定,同时总结了双指针可减少循环次数,使解决方式更简单高效。
LeetCode第18题四数之和
|
7月前
leetcode54螺旋矩阵题解
leetcode54螺旋矩阵题解
36 2
|
7月前
18.四数之和
18.四数之和
|
8月前
18. 四数之和
18. 四数之和
46 2
|
7月前
|
算法 容器
【LeetCode刷题】三数之和、四数之和
【LeetCode刷题】三数之和、四数之和
|
8月前
[leetcode] 四数之和 M
[leetcode] 四数之和 M
|
8月前
|
Java 测试技术 C++
leetcode-18:四数之和
leetcode-18:四数之和
47 0
|
算法 安全 Swift
LeetCode - #18 四数之和
不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。