利用WireShark进行DNS协议分析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

一.准备工作

系统是Windows 8.1Pro

分析工具是WireShark1.10.8 Stable Version

使用系统Ping命令发送ICMP报文.

二.开始工作

打开CMD.exe键入:

ping www.oschina.net

将自动进行域名解析,默认发送4个ICMP报文.

启动Wireshark,选择一个有效网卡,启动抓包.

在控制台回车执行完毕后停止监控.

三.分析阶段

截获的所有报文如下:

image

总得来看有两个DNS包(一次域名解析),和8个ICMP包(四次ping)

下面开始分析DNS的工作过程:

打开第一个包:

image

可以发现DNS为应用层协议,下层传输层采用UDP,再下层网络层是IP协议,然后是数据链路层的以太网帧.

需要关注的是应用层的实现也即DNS协议本身.

在此之前,可以从下层获得一些必要信息:

UDP(User Datagram Protocol)报文中:DNS的目的端口(Dst Port)是53

IPv4(Internet Protocol Version 4)报文中目的IP是192.168.1.1(局域网路由器)

由于IP报文在网络层进行路由选择,他会依次送给路由器而不是直接送给DNS服务器,这一点也十分容易理解,

第一个包是请求包,不可能直接包含DNS服务器地址.

展开DNS数据:

image

第一个是Transaction ID为标识字段,2字节,用于辨别DNS应答报文是哪个请求报文的响应.

第二个是Flags标志字段,2字节,每一位的含义不同,具体可以参考上面那个图,也可以看下面这个图:

image

QR: 查询/响应,1为响应,0为查询

Opcode: 查询或响应类型,这里0表示标准,1表示反向,2表示服务器状态请求

AA: 授权回答,在响应报文中有效,待会儿再看

TC: 截断,1表示超过512字节并已被截断,0表示没有发生截断

RD: 是否希望得到递归回答

RA: 响应报文中为1表示得到递归响应

zero: 全0保留字段

rcode: 返回码,在响应报文中,各取值的含义:

0 - 无差错

1 - 格式错误

2 - 域名服务器出现错误

3 - 域参照问题

4 - 查询类型不支持

5 - 被禁止

6 ~ 15 保留

紧接着标志位的是

Quetions(问题数),2字节,通常为1

Answer RRs(资源记录数),Authority RRs(授权资源记录数),Additional RRs(额外资源记录数)通常为0

字段Queries为查询或者响应的正文部分,分为Name Type Class

Name(查询名称):这里是ping后的参数,不定长度以0结束

Type(查询类型):2字节,这里是主机A记录.其各个取值的含义如下:

值        助记符         说明

 1         A                 IPv4地址。

 2         NS               名字服务器。

 5         CNAME        规范名称。定义主机的正式名字的别名。

 6         SOA             开始授权。标记一个区的开始。

 11       WKS             熟知服务。定义主机提供的网络服务。

 12       PTR               指针。把IP地址转化为域名。

 13       HINFO          主机信息。给出主机使用的硬件和操作系统的表述。

 15       MX               邮件交换。把邮件改变路由送到邮件服务器。

 28       AAAA           IPv6地址。

 252     AXFR            传送整个区的请求。

 255     ANY             对所有记录的请求。

Class(类):2字节,IN表示Internet数据,通常为1

下面是截获的第二个DNS包:

image

可以看到和第一个请求包相比,响应包多出了一个Answers字段,同时Flags字段每一位都有定义.

关注一下Flags中Answer RRs 为4 说明对应的Answers字段中将会出现4项解析结果.

Answers字段可以看成一个List,集合中每项为一个资源记录,除了上面提到过的Name,Type,Class之外,还有Time to

Live,Data length,Addr.

Time to Live(生存时间TTL):表示该资源记录的生命周期,从取出记录到抹掉记录缓存的时间,以秒为单位.这里是0x00 00 00 fd 合计253s.

Data length(资源数据长度):以字节为单位,这里的4表示IP地址的长度为4字节.也就是下面Addr字段的长度.

Addr(资源数据): 返回的IP地址,就是我们想要的结果.

可以发现有4条资源记录,4个不同的IP地址,说明域名 www.oschina.net 对应有4个IP地址,分别是:

112.124.5.74

219.136.249.194

61.145.122.155

121.9.213.124

CMD中显示的是第一条IP地址.我试了下直接访问上面各个地址的80端口(http),

第一个和第二个显示403 Forbidden

第三个和第四个显示404 Not Found

还有每个地址哦Server都不一样oscali,oscdb,liubc,ep2,第一个像阿里云服务器,第二个看起来像数据库的服务器,其他就不知道了...

Web服务器貌似是Tengine,

不知道为什么通过IP地址无法直接访问web站点,以后感兴趣再研究下哈哈

关于ICMP协议的报文分析将在之后的文章中给出.今天先到这吧.

最后,欢迎大家评论交流~特别是OSC在搞什么鬼.

相关文章
|
3月前
|
XML 监控 网络协议
云深处绝影四足机器人协议学习解析
本文详细介绍并解析了云深处绝影X20四足机器人的通信协议,包括TCP服务端端口号、基于Service的请求/响应通信机制、通信帧结构、消息类型、常见的通信示例如获取状态和导航请求,以及运动控制的参数和命令。文中还提出了对协议中某些未明确说明或可能存在的问题的疑惑。
38 0
云深处绝影四足机器人协议学习解析
|
17天前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
75 3
|
2月前
|
域名解析 存储 网络协议
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
本文详细介绍了IP协议报头结构及其各字段的功能,包括版本、首部长度、服务类型、总长度、标识、片偏移、标志、生存时间(TTL)、协议、首部检验和等内容。此外,还探讨了IP地址的网段划分、特殊IP地址的应用场景,以及路由选择的大致流程。最后,文章简要介绍了DNS协议的作用及其发展历史,解释了域名解析系统的工作原理。
101 5
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
|
19天前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
119 2
|
3月前
|
缓存 网络协议 安全
【网络攻防战】DNS协议的致命弱点:如何利用它们发动悄无声息的网络攻击?
【8月更文挑战第26天】DNS(域名系统)是互联网的关键组件,用于将域名转换为IP地址。然而,DNS协议存在安全漏洞,包括缺乏身份验证机制、缓存中毒风险及放大攻击的可能性。通过具体案例,如DNS缓存中毒和DNS放大攻击,攻击者能够误导用户访问恶意站点或对目标服务器实施DDoS攻击。为了防范这些威胁,可以采用DNSSEC实现数字签名验证、利用加密的DNS服务(如DoH或DoT)、限制DNS服务器响应以及及时更新DNS软件等措施。理解并应对DNS的安全挑战对于确保网络环境的安全至关重要。
89 2
|
17天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
22 1
|
2月前
|
前端开发 JavaScript 安全
深入解析 http 协议
HTTP(超文本传输协议)不仅用于传输文本,还支持图片、音频和视频等多种类型的数据。当前广泛使用的版本为 HTTP/1.1。HTTPS 可视为 HTTP 的安全增强版,主要区别在于添加了加密层。HTTP 请求和响应均遵循固定格式,包括请求行/状态行、请求/响应头、空行及消息主体。URL(统一资源定位符)用于标识网络上的资源,其格式包含协议、域名、路径等信息。此外,HTTP 报头提供了附加信息,帮助客户端和服务端更好地处理请求与响应。状态码则用于指示请求结果,如 200 表示成功,404 表示未找到,500 表示服务器内部错误等。
40 0
深入解析 http 协议
|
2月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
147 7
|
2月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
64 3
|
2月前
|
消息中间件 安全 Kafka
Kafka支持SSL/TLS协议技术深度解析
SSL(Secure Socket Layer,安全套接层)及其继任者TLS(Transport Layer Security,传输层安全)是为网络通信提供安全及数据完整性的一种安全协议。这些协议在传输层对网络连接进行加密,确保数据在传输过程中不被窃取或篡改。
128 0

相关产品

  • 云解析DNS
  • 推荐镜像

    更多