模式识别与图像处理课程实验二:基于UNet的目标检测网络(上)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 模式识别与图像处理课程实验二:基于UNet的目标检测网络

一、 实验原理与目的


eb8c0a1424e44e6da33c6f7d83161b67.jpg

实验采用Unet目标检测网络实现对目标的检测。例如检测舰船、车辆、人脸、道路等。其中的Unet网络结构如下所示


91ea42cdf74146f9bb1a5f1f9074ffa5.jpg


U-Net 是一个 encoder-decoder 结构,左边一半的 encoder 包括若干卷积,池化,把图像进行下采样,右边的 decoder 进行上采样,恢复到原图的形状,给出每个像素的预测。


编码器有四个子模块,每个子模块包含两个卷积层,每个子模块之后有一个通过 maxpool 实现的下采样层。


输入图像的分辨率是 572x572, 第 1-5 个模块的分辨率分别是 572x572, 284x284, 140x140, 68x68 和 32x32。


解码器包含四个子模块,分辨率通过上采样操作依次上升,直到与输入图像的分辨率一致。该网络还使用了跳跃连接,将上采样结果与编码器中具有相同分辨率的子模块的输出进行连接,作为解码器中下一个子模块的输入。


架构中的一个重要修改部分是在上采样中还有大量的特征通道,这些通道允许网络将上下文信息传播到具有更高分辨率的层。因此,拓展路径或多或少地与收缩路径对称,并产生一个 U 形结构。


在该网络中没有任何完全连接的层,并且仅使用每个卷积的有效部分,即分割映射仅包含在输入图像中可获得完整上下文的像素。该策略允许通过重叠平铺策略对任意大小的图像进行无缝分割,如图所示。为了预测图像边界区域中的像素,通过镜像输入图像来推断缺失的上下文。这种平铺策略对于将网络应用于大型的图像非常重要,否则分辨率将受到 GPU 内存的限制。


二、 实验内容


本实验通过Unet网络,实现对道路目标的检测,测试的数据集存放于文件夹中。使用Unet网络得到训练的数据集:道路目标检测的结果。


三、 实验程序


3.1、导入库

# 导入库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models, utils
from torch.utils.data import DataLoader, Dataset, random_split
from torch.utils.tensorboard import SummaryWriter
#from torchsummary import summary
import matplotlib.pyplot as plt
import numpy as np
import time
import os
import copy
import cv2
import argparse   # argparse库: 解析命令行参数
from tqdm import tqdm   # 进度条


3.2、创建一个解析对象

# 创建一个解析对象
parser = argparse.ArgumentParser(description="Choose mode")


3.3、输入命令行和参数

# 输入命令行和参数
parser.add_argument('-mode', required=True, choices=['train', 'test'], default='train')
parser.add_argument('-dim', type=int, default=16)
parser.add_argument('-num_epochs', type=int, default=3)
parser.add_argument('-image_scale_h', type=int, default=256)
parser.add_argument('-image_scale_w', type=int, default=256)
parser.add_argument('-batch', type=int, default=4)
parser.add_argument('-img_cut', type=int, default=4)
parser.add_argument('-lr', type=float, default=5e-5)
parser.add_argument('-lr_1', type=float, default=5e-5)
parser.add_argument('-alpha', type=float, default=0.05)
parser.add_argument('-sa_scale', type=float, default=8)
parser.add_argument('-latent_size', type=int, default=100)
parser.add_argument('-data_path', type=str, default='./munich/train/img')
parser.add_argument('-label_path', type=str, default='./munich/train/lab')
parser.add_argument('-gpu', type=str, default='0')
parser.add_argument('-load_model', required=True, choices=['True', 'False'], help='choose True or False', default='False')

3.4、parse_args()方法进行解析

# parse_args()方法进行解析
opt = parser.parse_args()
print(opt)
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
use_cuda = torch.cuda.is_available()
print("use_cuda:", use_cuda)

3.5、指定计算机的第一个设备是GPU

# 指定计算机的第一个设备是GPU
device = torch.device("cuda" if use_cuda else "cpu")
IMG_CUT = opt.img_cut
LATENT_SIZE = opt.latent_size
writer = SummaryWriter('./runs2/gx0102')


3.6、创建文件路径

# 创建文件路径
def auto_create_path(FilePath):
    if os.path.exists(FilePath):   
            print(FilePath + ' dir exists')
    else:
            print(FilePath + ' dir not exists')
            os.makedirs(FilePath)

3.7、创建文件存放训练的结果

# 创建文件存放训练的结果
auto_create_path('./test/lab_dete_AVD')
auto_create_path('./model')
auto_create_path('./results')


3.8、向下采样,求剩余的区域

# 向下采样,求剩余的区域
class ResidualBlockClass(nn.Module):
    def __init__(self, name, input_dim, output_dim, resample=None, activate='relu'):
        super(ResidualBlockClass, self).__init__()
        self.name = name
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.resample = resample 
        self.batchnormlize_1 = nn.BatchNorm2d(input_dim)
        self.activate = activate
        if resample == 'down':
            self.conv_0 = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1)
            self.conv_shortcut = nn.AvgPool2d(3, stride=2, padding=1)
            self.conv_1 = nn.Conv2d(in_channels=input_dim, out_channels=input_dim, kernel_size=3, stride=1, padding=1)
            self.conv_2 = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=2, padding=1)
            self.batchnormlize_2 = nn.BatchNorm2d(input_dim)
        elif resample == 'up':
            self.conv_0 = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1)
            self.conv_shortcut = nn.Upsample(scale_factor=2)
            self.conv_1 = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1)
            self.conv_2 = nn.ConvTranspose2d(in_channels=output_dim, out_channels=output_dim, kernel_size=3, stride=2, padding=2,
                                           output_padding=1, dilation=2)
            self.batchnormlize_2 = nn.BatchNorm2d(output_dim)
        elif resample == None:
            self.conv_shortcut = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1)
            self.conv_1        = nn.Conv2d(in_channels=input_dim, out_channels=input_dim, kernel_size=3, stride=1, padding=1)
            self.conv_2        = nn.Conv2d(in_channels=input_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1)
            self.batchnormlize_2 = nn.BatchNorm2d(input_dim)
        else:
            raise Exception('invalid resample value')
    def forward(self, inputs):
        if self.output_dim == self.input_dim and self.resample == None:
            shortcut = inputs 
        elif self.resample == 'down':
            x = self.conv_0(inputs)
            shortcut = self.conv_shortcut(x)
        elif self.resample == None:
            x = inputs
            shortcut = self.conv_shortcut(x) 
        else:
            x = self.conv_0(inputs)
            shortcut = self.conv_shortcut(x)
        if self.activate == 'relu':
            x = inputs
            x = self.batchnormlize_1(x)
            x = F.relu(x)
            x = self.conv_1(x)
            x = self.batchnormlize_2(x)
            x = F.relu(x)
            x = self.conv_2(x) 
            return shortcut + x
        else:   
            x = inputs
            x = self.batchnormlize_1(x)
            x = F.leaky_relu(x)
            x = self.conv_1(x)
            x = self.batchnormlize_2(x)
            x = F.leaky_relu(x)
            x = self.conv_2(x)
            return shortcut + x 
class Self_Attn(nn.Module):
    """ Self attention Layer"""
    def __init__(self,in_dim,activation=None):
        super(Self_Attn,self).__init__()
        self.chanel_in = in_dim
        # self.activation = activation
        self.query_conv = nn.Conv2d(in_channels = in_dim, out_channels = in_dim//opt.sa_scale, kernel_size = 1)
        self.key_conv = nn.Conv2d(in_channels = in_dim, out_channels = in_dim//opt.sa_scale, kernel_size = 1)
        self.value_conv = nn.Conv2d(in_channels = in_dim, out_channels = in_dim, kernel_size = 1)
        self.gamma = nn.Parameter(torch.zeros(1))
        self.softmax  = nn.Softmax(dim=-1) 
    def forward(self,x):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature 
                attention: B X N X N (N is Width*Height)
        """
        m_batchsize, C, width, height = x.size()
        proj_query  = self.query_conv(x).view(m_batchsize,-1,width*height).permute(0,2,1) # B X (W*H) X C
        proj_key =  self.key_conv(x).view(m_batchsize,-1,width*height) # B X C x (*W*H)
        energy =  torch.bmm(proj_query,proj_key) # transpose check
        attention = self.softmax(energy) # BX (N) X (N) 
        proj_value = self.value_conv(x).view(m_batchsize,-1,width*height) # B X C X N
        out = torch.bmm(proj_value,attention.permute(0,2,1))
        out = out.view(m_batchsize, C, width, height)
        out = self.gamma*out + x
        return out

3.9、上采样,使用卷积恢复区域

# 上采样,使用卷积恢复区域
class UpProject(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UpProject, self).__init__()
        # self.batch_size = batch_size
        self.conv1_1 = nn.Conv2d(in_channels, out_channels, 3)
        self.conv1_2 = nn.Conv2d(in_channels, out_channels, (2, 3))
        self.conv1_3 = nn.Conv2d(in_channels, out_channels, (3, 2))
        self.conv1_4 = nn.Conv2d(in_channels, out_channels, 2)
        self.conv2_1 = nn.Conv2d(in_channels, out_channels, 3)
        self.conv2_2 = nn.Conv2d(in_channels, out_channels, (2, 3))
        self.conv2_3 = nn.Conv2d(in_channels, out_channels, (3, 2))
        self.conv2_4 = nn.Conv2d(in_channels, out_channels, 2)
        self.bn1_1 = nn.BatchNorm2d(out_channels)
        self.bn1_2 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv3 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
    def forward(self, x):
        # b, 10, 8, 1024
        batch_size = x.shape[0]
        out1_1 = self.conv1_1(nn.functional.pad(x, (1, 1, 1, 1)))
        out1_2 = self.conv1_2(nn.functional.pad(x, (1, 1, 0, 1)))#right interleaving padding
        #out1_2 = self.conv1_2(nn.functional.pad(x, (1, 1, 1, 0)))#author's interleaving pading in github
        out1_3 = self.conv1_3(nn.functional.pad(x, (0, 1, 1, 1)))#right interleaving padding
        #out1_3 = self.conv1_3(nn.functional.pad(x, (1, 0, 1, 1)))#author's interleaving pading in github
        out1_4 = self.conv1_4(nn.functional.pad(x, (0, 1, 0, 1)))#right interleaving padding
        #out1_4 = self.conv1_4(nn.functional.pad(x, (1, 0, 1, 0)))#author's interleaving pading in github
        out2_1 = self.conv2_1(nn.functional.pad(x, (1, 1, 1, 1)))
        out2_2 = self.conv2_2(nn.functional.pad(x, (1, 1, 0, 1)))#right interleaving padding
        #out2_2 = self.conv2_2(nn.functional.pad(x, (1, 1, 1, 0)))#author's interleaving pading in github
        out2_3 = self.conv2_3(nn.functional.pad(x, (0, 1, 1, 1)))#right interleaving padding
        #out2_3 = self.conv2_3(nn.functional.pad(x, (1, 0, 1, 1)))#author's interleaving pading in github
        out2_4 = self.conv2_4(nn.functional.pad(x, (0, 1, 0, 1)))#right interleaving padding
        #out2_4 = self.conv2_4(nn.functional.pad(x, (1, 0, 1, 0)))#author's interleaving pading in github
        height = out1_1.size()[2]
        width = out1_1.size()[3]
        out1_1_2 = torch.stack((out1_1, out1_2), dim=-3).permute(0, 1, 3, 4, 2).contiguous().view(
            batch_size, -1, height, width * 2)
        out1_3_4 = torch.stack((out1_3, out1_4), dim=-3).permute(0, 1, 3, 4, 2).contiguous().view(
            batch_size, -1, height, width * 2)
        out1_1234 = torch.stack((out1_1_2, out1_3_4), dim=-3).permute(0, 1, 3, 2, 4).contiguous().view(
            batch_size, -1, height * 2, width * 2)
        out2_1_2 = torch.stack((out2_1, out2_2), dim=-3).permute(0, 1, 3, 4, 2).contiguous().view(
            batch_size, -1, height, width * 2)
        out2_3_4 = torch.stack((out2_3, out2_4), dim=-3).permute(0, 1, 3, 4, 2).contiguous().view(
            batch_size, -1, height, width * 2)
        out2_1234 = torch.stack((out2_1_2, out2_3_4), dim=-3).permute(0, 1, 3, 2, 4).contiguous().view(
            batch_size, -1, height * 2, width * 2)
        out1 = self.bn1_1(out1_1234)
        out1 = self.relu(out1)
        out1 = self.conv3(out1)
        out1 = self.bn2(out1)
        out2 = self.bn1_2(out2_1234)
        out = out1 + out2
        out = self.relu(out)
        return out
#编码,下采样
class Fcrn_encode(nn.Module):
    def __init__(self, dim=opt.dim):
        super(Fcrn_encode, self).__init__()
        self.dim = dim
        self.conv_1 = nn.Conv2d(in_channels=3, out_channels=dim, kernel_size=3, stride=1, padding=1)
        self.residual_block_1_down_1 = ResidualBlockClass('Detector.Res1', 1*dim, 2*dim, resample='down', activate='leaky_relu')
    # 128x128
        self.residual_block_2_down_1 = ResidualBlockClass('Detector.Res2', 2*dim, 4*dim, resample='down', activate='leaky_relu')
    #64x64
        self.residual_block_3_down_1     = ResidualBlockClass('Detector.Res3', 4*dim, 4*dim, resample='down', activate='leaky_relu')
    #32x32
        self.residual_block_4_down_1     = ResidualBlockClass('Detector.Res4', 4*dim, 6*dim, resample='down', activate='leaky_relu')
    #16x16
        self.residual_block_5_none_1     = ResidualBlockClass('Detector.Res5', 6*dim, 6*dim, resample=None, activate='leaky_relu')
    def forward(self, x, n1=0, n2=0, n3=0):
        x1 = self.conv_1(x)#x1:dimx256x256
        x2 = self.residual_block_1_down_1(x1)#x2:2dimx128x128
        x3 = self.residual_block_2_down_1((1-opt.alpha)*x2+opt.alpha*n1)#x3:4dimx64x64
        x4 = self.residual_block_3_down_1((1-opt.alpha)*x3+opt.alpha*n2)#x4:4dimx32x32
        x = self.residual_block_4_down_1((1-opt.alpha)*x4+opt.alpha*n3)
        feature = self.residual_block_5_none_1(x)
        x = F.tanh(feature)       
        return x, x2, x3, x4

3.10、解码, 上采样

# 解码, 上采样
class Fcrn_decode(nn.Module):
    def __init__(self, dim=opt.dim):
        super(Fcrn_decode, self).__init__()
        self.dim = dim
        self.conv_2 = nn.Conv2d(in_channels=dim, out_channels=1, kernel_size=3, stride=1, padding=1)
        self.residual_block_6_none_1     = ResidualBlockClass('Detector.Res6', 6*dim, 6*dim, resample=None, activate='leaky_relu')
#         self.residual_block_7_up_1       = ResidualBlockClass('Detector.Res7', 6*dim, 6*dim, resample='up', activate='leaky_relu')
        self.sa_0                        = Self_Attn(6*dim)
        #32x32
        self.UpProject_1                 = UpProject(6*dim, 4*dim)
        self.residual_block_8_up_1       = ResidualBlockClass('Detector.Res8', 6*dim, 4*dim, resample='up', activate='leaky_relu')
        self.sa_1                        = Self_Attn(4*dim)
        #64x64
        self.UpProject_2                 = UpProject(2*4*dim, 4*dim)
        self.sa_2                        = Self_Attn(4*dim)
        self.residual_block_9_up_1       = ResidualBlockClass('Detector.Res9', 4*dim, 4*dim, resample='up', activate='leaky_relu')
        #128x128
        self.UpProject_3                 = UpProject(2*4*dim, 2*dim)
        self.sa_3                        = Self_Attn(2*dim)
        self.residual_block_10_up_1      = ResidualBlockClass('Detector.Res10', 4*dim, 2*dim, resample='up', activate='leaky_relu')
        #256x256
        self.UpProject_4                 = UpProject(2*2*dim, 1*dim)
        self.sa_4                        = Self_Attn(1*dim)
        self.residual_block_11_up_1      = ResidualBlockClass('Detector.Res11', 2*dim, 1*dim, resample='up', activate='leaky_relu')
    def forward(self, x, x2, x3, x4):
        x = self.residual_block_6_none_1(x)
        x = self.UpProject_1(x)
        x = self.sa_1(x)
        x = self.UpProject_2(torch.cat((x, x4), dim=1))
        x = self.sa_2(x)
        x = self.UpProject_3(torch.cat((x, x3), dim=1))
#         x = self.sa_3(x)
        x = self.UpProject_4(torch.cat((x, x2), dim=1))
#         x = self.sa_4(x)
        x = F.normalize(x, dim=[0, 2, 3])
        x = F.leaky_relu(x)
        x = self.conv_2(x)
        x = F.sigmoid(x)
        return x
class Generator(nn.Module):
    def __init__(self, dim=opt.dim):
        super(Generator, self).__init__()
        self.dim = dim
        self.conv_1 = nn.Conv2d(in_channels=4, out_channels=1*dim, kernel_size=3, stride=1, padding=1)
        self.conv_2 = nn.Conv2d(in_channels=dim, out_channels=3, kernel_size=3, stride=1, padding=1)
        self.batchnormlize = nn.BatchNorm2d(1*dim)
        self.residual_block_1  = ResidualBlockClass('G.Res1', 1*dim, 2*dim, resample='down')
        #128x128
        self.residual_block_2  = ResidualBlockClass('G.Res2', 2*dim, 4*dim, resample='down')
        #64x64
#         self.residual_block_2_1  = ResidualBlockClass('G.Res2_1', 4*dim, 4*dim, resample='down')
        #64x64
        #self.residual_block_2_2  = ResidualBlockClass('G.Res2_2', 4*dim, 4*dim, resample=None)
        #64x64
        self.residual_block_3  = ResidualBlockClass('G.Res3', 4*dim, 4*dim, resample='down')
        #32x32
        self.residual_block_4  = ResidualBlockClass('G.Res4', 4*dim, 6*dim, resample='down')
        #16x16 
        self.residual_block_5  = ResidualBlockClass('G.Res5', 6*dim, 6*dim, resample=None)
        #16x16
        self.residual_block_6  = ResidualBlockClass('G.Res6', 6*dim, 6*dim, resample=None) 
    def forward(self, x):
        x = self.conv_1(x)
        x1 = self.residual_block_1(x)#x1:2*dimx128x128
        x2 = self.residual_block_2(x1)#x2:4*dimx64x64
#         x = self.residual_block_2_1(x)
        #x = self.residual_block_2_2(x)
        x3 = self.residual_block_3(x2)#x3:4*dimx32x32
        x = self.residual_block_4(x3)#x4:6*dimx16x16
        x = self.residual_block_5(x)
        x = self.residual_block_6(x)
        x = F.tanh(x)
        return x, x1, x2, x3
class Discriminator(nn.Module):
    def __init__(self, dim=opt.dim):
        super(Discriminator, self).__init__()   
        self.dim = dim
        self.conv_1 = nn.Conv2d(in_channels=6*dim, out_channels=6*dim, kernel_size=3, stride=1, padding=1)
        #16x16
        self.conv_2 = nn.Conv2d(in_channels=6*dim, out_channels=6*dim, kernel_size=3, stride=1, padding=1)
        self.conv_3 = nn.Conv2d(in_channels=6*dim, out_channels=4*dim, kernel_size=3, stride=1, padding=1)
        self.bn_1   = nn.BatchNorm2d(6*dim)
        self.conv_4 = nn.Conv2d(in_channels=4*dim, out_channels=4*dim, kernel_size=3, stride=2, padding=1)
        #8x8
        self.conv_5 = nn.Conv2d(in_channels=4*dim, out_channels=4*dim, kernel_size=3, stride=1, padding=1)
        #8x8
        self.conv_6 = nn.Conv2d(in_channels=4*dim, out_channels=2*dim, kernel_size=3, stride=2, padding=1)
        #4x4
        self.bn_2   = nn.BatchNorm2d(2*dim)
        self.conv_7 = nn.Conv2d(in_channels=2*dim, out_channels=2*dim, kernel_size=3, stride=1, padding=1)
        #4x4
        self.conv_8 = nn.Conv2d(in_channels=2*dim, out_channels=1*dim, kernel_size=3, stride=1, padding=1)
        #4x4
        #self.conv_9 = nn.Conv2d(in_channels=1*dim, out_channels=1, kernel_size=4, stride=1, padding=(0, 1), dilation=(1, 3))
        #1x1
    def forward(self, x):
        x = F.leaky_relu(self.conv_1(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_2(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_3(x), negative_slope=0.02)
#         x = F.leaky_relu(self.bn_1(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_4(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_5(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_6(x), negative_slope=0.02)
#         x = F.leaky_relu(self.bn_2(x), negative_slope=0.2)
        x = F.leaky_relu(self.conv_7(x), negative_slope=0.02)
        x = F.leaky_relu(self.conv_8(x), negative_slope=0.02)
        #x = self.conv_9(x)
        x = torch.mean(x, dim=[1, 2, 3])
        x = F.sigmoid(x)
        return x.view(-1, 1).squeeze()
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])


3.11、获取训练的数据集

# 获取训练的数据集
class GAN_Dataset(Dataset):
    def __init__(self, transform=None):
        self.transform = transform
    def __len__(self):
        return len(os.listdir(opt.data_path))
    def __getitem__(self, idx):
        img_name = os.listdir(opt.data_path)[idx]
        imgA = cv2.imread(opt.data_path + '/' + img_name)
        imgA = cv2.resize(imgA, (opt.image_scale_w, opt.image_scale_h))
        imgB = cv2.imread(opt.label_path + '/' + img_name[:-4] + '.png', 0)
        imgB = cv2.resize(imgB, (opt.image_scale_w, opt.image_scale_h))
        # imgB[imgB>30] = 255 
        imgB = imgB/255
        #imgB = imgB.astype('uint8')
        imgB = torch.FloatTensor(imgB)
        imgB = torch.unsqueeze(imgB, 0)
        #print(imgB.shape)
        if self.transform:
            imgA = self.transform(imgA)
        return imgA, imgB
img_road = GAN_Dataset(transform)
train_dataloader = DataLoader(img_road, batch_size=opt.batch, shuffle=True)
print(len(train_dataloader.dataset), train_dataloader.dataset[7][1].shape)


3.12、测试数据集

# 测试数据集
class test_Dataset(Dataset):
    # DATA_PATH = './test/img'
    # LABEL_PATH = './test/lab'
    def __init__(self, transform=None):
        self.transform = transform
    def __len__(self):
        return len(os.listdir('./munich/test/img'))
    def __getitem__(self, idx):
        img_name = os.listdir('./munich/test/img')
        img_name.sort(key=lambda x:int(x[:-4]))
        img_name = img_name[idx]
        imgA = cv2.imread('./munich/test/img' + '/' + img_name)
        imgA = cv2.resize(imgA, (opt.image_scale_w, opt.image_scale_h))
        imgB = cv2.imread('./munich/test/lab' + '/' + img_name[:-4] + '.png', 0)
        imgB = cv2.resize(imgB, (opt.image_scale_w, opt.image_scale_h))
        #imgB = imgB/255
        # imgB[imgB>30] = 255
        imgB = imgB/255
        #imgB = imgB.astype('uint8')
        imgB = torch.FloatTensor(imgB)
        imgB = torch.unsqueeze(imgB, 0)
        #print(imgB.shape)
        if self.transform:
            #imgA = imgA/255
            #imgA = np.transpose(imgA, (2, 0, 1))
            #imgA = torch.FloatTensor(imgA)
            imgA = self.transform(imgA)           
        return imgA, imgB, img_name[:-4]
img_road_test = test_Dataset(transform)
test_dataloader = DataLoader(img_road_test, batch_size=1, shuffle=False)
print(len(test_dataloader.dataset), test_dataloader.dataset[7][1].shape)
loss = nn.BCELoss()
fcrn_encode = Fcrn_encode()
fcrn_encode = nn.DataParallel(fcrn_encode)
fcrn_encode = fcrn_encode.to(device)
if opt.load_model == 'True':
    fcrn_encode.load_state_dict(torch.load('./model/fcrn_encode_{}_link.pkl'.format(opt.alpha)))
fcrn_decode = Fcrn_decode()
fcrn_decode = nn.DataParallel(fcrn_decode)
fcrn_decode = fcrn_decode.to(device)
if opt.load_model == 'True':
    fcrn_decode.load_state_dict(torch.load('./model/fcrn_decode_{}_link.pkl'.format(opt.alpha)))
Gen = Generator()
Gen = nn.DataParallel(Gen)
Gen = Gen.to(device)
if opt.load_model == 'True':
    Gen.load_state_dict(torch.load('./model/Gen_{}_link.pkl'.format(opt.alpha)))
Dis = Discriminator()
Dis = nn.DataParallel(Dis)
Dis = Dis.to(device)
if opt.load_model == 'True':
    Dis.load_state_dict(torch.load('./model/Dis_{}_link.pkl'.format(opt.alpha)))
Dis_optimizer = optim.Adam(Dis.parameters(), lr=opt.lr_1)
Dis_scheduler = optim.lr_scheduler.StepLR(Dis_optimizer,step_size=800,gamma = 0.5)
Fcrn_encode_optimizer = optim.Adam(fcrn_encode.parameters(), lr=opt.lr)
encode_scheduler = optim.lr_scheduler.StepLR(Fcrn_encode_optimizer,step_size=300,gamma = 0.5)
Fcrn_decode_optimizer = optim.Adam(fcrn_decode.parameters(), lr=opt.lr)
decode_scheduler = optim.lr_scheduler.StepLR(Fcrn_decode_optimizer,step_size=300,gamma = 0.5)
Gen_optimizer = optim.Adam(Gen.parameters(), lr=opt.lr_1)
Gen_scheduler = optim.lr_scheduler.StepLR(Gen_optimizer,step_size=800,gamma = 0.5)

3.13、训练函数

# 训练函数
def train(device, train_dataloader, epoch):
    fcrn_encode.train()
    fcrn_decode.train()
#     Gen.train()
    for batch_idx, (road, road_label)in enumerate(train_dataloader):
        road, road_label = road.to(device), road_label.to(device)
        z = torch.randn(road.shape[0], 1, opt.image_scale_h, opt.image_scale_w, device=device)
        img_noise = torch.cat((road, z), dim=1)
        fake_feature, n1, n2, n3 = Gen(img_noise)
        feature, x2, x3, x4 = fcrn_encode(road, n1, n2, n3)
        Dis_optimizer.zero_grad()
        d_real = Dis(feature.detach())
        d_loss_real = loss(d_real, 0.9*torch.ones_like(d_real))
        d_fake = Dis((1-opt.alpha)*feature.detach() + opt.alpha*fake_feature.detach())
        d_loss_fake = loss(d_fake, 0.1 + torch.zeros_like(d_fake))
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        Dis_optimizer.step()
        Gen_optimizer.zero_grad()
        z = torch.randn(road.shape[0], 1, opt.image_scale_h, opt.image_scale_w, device=device)
        img_noise = torch.cat((road, z), dim=1)
        fake_feature, n1, n2, n3 = Gen(img_noise)
        detect_noise = fcrn_decode((1-opt.alpha)*feature.detach() + opt.alpha*fake_feature, x2, x3, x4)
        d_fake = Dis((1-opt.alpha)*feature.detach() + opt.alpha*fake_feature)
        g_loss = loss(d_fake, 0.9*torch.ones_like(d_fake))
        g_loss -= loss(detect_noise, road_label)
        g_loss.backward()
        Gen_optimizer.step()
        z = torch.randn(road.shape[0], 1, opt.image_scale_h, opt.image_scale_w, device=device)
        img_noise = torch.cat((road, z), dim=1)
        fake_feature, n1, n2, n3 = Gen(img_noise)
        # feature_img = fake_feature.detach().cpu()
        # feature_img = np.transpose(np.array(utils.make_grid(feature_img, nrow=IMG_CUT)), (1, 2, 0))
        feature, x2, x3, x4 = fcrn_encode(road, n1, n2, n3)
        #detect = fcrn_decode(0.9*feature + 0.1*fake_feature)
        detect = fcrn_decode(feature, x2, x3, x4 )
        # detect_img = detect.detach().cpu()
        # detect_img = np.transpose(np.array(utils.make_grid(detect_img, nrow=IMG_CUT)), (1, 2, 0))
        # blur = cv2.GaussianBlur(detect_img*255, (3, 3), 0)
        # _, thresh = cv2.threshold(blur,120,255,cv2.THRESH_BINARY)
        fcrn_loss = loss(detect, road_label)
        fcrn_loss += torch.mean(torch.abs(detect-road_label))/(torch.mean(torch.abs(detect+road_label))+0.001)
        Fcrn_encode_optimizer.zero_grad()
        Fcrn_decode_optimizer.zero_grad()
        fcrn_loss.backward()
        Fcrn_encode_optimizer.step()
        Fcrn_decode_optimizer.step()
        z = torch.randn(road.shape[0], 1, opt.image_scale_h, opt.image_scale_w, device=device)
        img_noise = torch.cat((road, z), dim=1)
        fake_feature, n1, n2, n3 = Gen(img_noise)
        # ffp, _ = torch.split(fake_feature, [3, 6*opt.dim-3], dim=1)
        # fake_feature_np = ffp.detach().cpu()
        # fake_feature_np = np.transpose(np.array(utils.make_grid(fake_feature_np, nrow=IMG_CUT, padding=0)), (1, 2, 0))
        feature, x2, x3, x4  = fcrn_encode(road, n1, n2, n3)
        # fp, _ = torch.split(feature, [3, 6*opt.dim-3], dim=1)
        # feature_np = fp.detach().cpu()
        # feature_np = np.transpose(np.array(utils.make_grid(feature_np, nrow=IMG_CUT, padding=0)), (1, 2, 0))
        road_np = road.detach().cpu()
        road_np = np.transpose(np.array(utils.make_grid(road_np, nrow=IMG_CUT, padding=0)), (1, 2, 0))
        road_label_np = road_label.detach().cpu()
        road_label_np = np.transpose(np.array(utils.make_grid(road_label_np, nrow=IMG_CUT, padding=0)), (1, 2, 0))
        detect_noise = fcrn_decode((1-opt.alpha)*feature + opt.alpha*fake_feature.detach(), x2, x3, x4 )
        detect_noise_np = detect_noise.detach().cpu()
        detect_noise_np = np.transpose(np.array(utils.make_grid(detect_noise_np, nrow=IMG_CUT, padding=0)), (1, 2, 0))
        blur = cv2.GaussianBlur(detect_noise_np*255, (3, 3), 0)
        _, thresh = cv2.threshold(blur,120,255,cv2.THRESH_BINARY)
        fcrn_loss1 = loss(detect_noise, road_label)
        fcrn_loss1 += torch.mean(torch.abs(detect_noise-road_label))/(torch.mean(torch.abs(detect_noise+road_label))+0.001)
        Fcrn_decode_optimizer.zero_grad()
        Fcrn_encode_optimizer.zero_grad() 
        fcrn_loss1.backward()
        Fcrn_decode_optimizer.step()
        Fcrn_encode_optimizer.step()
        writer.add_scalar('g_loss', g_loss.data.item(), global_step = batch_idx)
        writer.add_scalar('d_loss', d_loss.data.item(), global_step = batch_idx)
        writer.add_scalar('Fcrn_loss', fcrn_loss1.data.item(), global_step = batch_idx)
        if batch_idx % 20 == 0:
            tqdm.write('[{}/{}] [{}/{}] Loss_Dis: {:.6f} Loss_Gen: {:.6f} Loss_Fcrn_encode: {:.6f} Loss_Fcrn_decode: {:.6f}'
                .format(epoch, num_epochs, batch_idx, len(train_dataloader), d_loss.data.item(), g_loss.data.item(), (fcrn_loss.data.item())/2, (fcrn_loss1.data.item())/2))
        if batch_idx % 300 == 0:
            mix = np.concatenate(((road_np+1)*255/2, road_label_np*255, detect_noise_np*255), axis=0)
            # feature_np = cv2.resize((feature_np + 1)*255/2, (opt.image_scale_w, opt.image_scale_h))
            # fake_feature_np = cv2.resize((fake_feature_np + 1)*255/2, (opt.image_scale_w, opt.image_scale_h))
            # mix1 = np.concatenate((feature_np, fake_feature_np), axis=0)
            cv2.imwrite("./results/dete{}_{}.png".format(epoch, batch_idx), mix)
            # cv2.imwrite('./results_fcrn_noise/feature{}_{}.png'.format(epoch, batch_idx), mix1)
# cv2.imwrite("./results/feature{}_{}.png".format(epoch, batch_idx), (feature_img + 1)*255/2)
# cv2.imwrite("./results9/label{}_{}.png".format(epoch, batch_idx), np.transpose(road_label.cpu().numpy(), (2, 0, 1))*255)


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
106 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
24天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
74 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
1月前
|
网络协议 网络虚拟化 网络架构
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(上)
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(上)
67 1
|
24天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
2月前
|
网络架构
静态路由 网络实验
本文介绍了如何通过配置静态路由实现不同网络设备间的通信,包括网络拓扑图、设备IP配置、查看路由表信息、配置静态路由和测试步骤。通过在路由器上设置静态路由,使得不同子网内的设备能够互相通信。
静态路由 网络实验
|
1月前
|
网络协议 数据安全/隐私保护 网络虚拟化
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(下)
【网络实验】/主机/路由器/交换机/网关/路由协议/RIP+OSPF/DHCP(下)
60 0
|
1月前
|
移动开发 网络协议 测试技术
Mininet多数据中心网络拓扑流量带宽实验
Mininet多数据中心网络拓扑流量带宽实验
59 0
|
1月前
|
Kubernetes 容器
基于Ubuntu-22.04安装K8s-v1.28.2实验(三)数据卷挂载NFS(网络文件系统)
基于Ubuntu-22.04安装K8s-v1.28.2实验(三)数据卷挂载NFS(网络文件系统)
138 0
下一篇
无影云桌面