【LeetCode】错误的集合&&在排序数组中查找元素的第一个和最后一个位置&&杨氏矩阵&&寻找数组的中心下标&&两个数组的交集

简介: 【LeetCode】错误的集合&&在排序数组中查找元素的第一个和最后一个位置&&杨氏矩阵&&寻找数组的中心下标&&两个数组的交集

👉错误的集合👈


集合 s 包含从 1 到 n 的整数。不幸的是,因为数据错误,导致集合里面某一个数字复制了成了集合里面的另外一个数字的值,导致集合丢失了一个数字并且有一个数字重复 。


给定一个数组 nums 代表了集合 S 发生错误后的结果。

请你找出重复出现的整数,再找到丢失的整数,将它们以数组的形式返回。



示例 1:


输入:nums = [1,2,2,4]

输出:[2,3]



示例 2:


输入:nums = [1,1]

输出:[1,2]



提示:


2 <= nums.length <= 10^4

1 <= nums[i] <= 10^4


思路一


首先对数组进行快排,然后定义两个两个变量prev和cur,prev初始化为0可对应缺失的数字是1的情况。cur是当前的数组元素,prev是当前的数组元素的上一个元素。当prev == cur时,说明重复的数字为prev;当cur - prev == 2时,说明prev和cur之间还有一个数字,该数字就是缺失的数字prev + 1。当for循环结束时,需要判断nums[numsSize - 1]是否等于numsSize。如果不等,说明缺失的数字为numsSize。


int cmp(const void* e1, const void* e2)
{
    return *(int*)e1 - *(int*)e2;
}
int* findErrorNums(int* nums, int numsSize, int* returnSize) 
{
    qsort(nums,numsSize,sizeof(int),cmp);
    int* ret = (int*)malloc(sizeof(int)*2);
    //ret数组的第一个元素是重复的数字,第二个元素是缺失的数字
    *returnSize = 2;
    int i = 0;
    int prev = 0;//初始化为0可对应缺失的数字是1的情况
    for(i = 0; i < numsSize; i++)
    {
        int cur = nums[i];
        //重复的数字
        if(prev == cur)
        {
            ret[0] = prev;
        }
        //cur - prev == 2 说明cur和prev之间有一个数,这个数就是缺失的数
        else if(cur - prev == 2)
        {
            ret[1] = prev + 1;
        }
        prev = cur;
    }
    //缺失的数字是numsSize
    if(nums[numsSize-1] != numsSize)
    {
        ret[1] = numsSize;
    }
    return ret;
}

57592806a397482fbaa275df0b052bdf.png

思路二


遍历nums数组,将其中数据对应的位置1, 哪一位如果已经重置过则意味着数据重复了,该数据就是重复的数字。在遍历数组的同时,求出1到 numsSize 的和oddSum以及nums数组的和curSum。因为nums数组多了一个重复的数字,少了一个缺失的数字,所以oddSum加上重复的数字ret[0]再减去curSum得到的就是消失的数字了。


int* findErrorNums(int* nums, int numsSize, int* returnSize)
{
    //遍历nums数组,将其中数据对应的位置1, 哪一位如果已经重置过则意味着数据重复了
    int* arr = (int*)calloc(numsSize+1, sizeof(int));//申请numsSize+1个整形空间,并初始化为0
    //申请numsSize+1个整型空间是防止数组越界
    int* ret = (int*)calloc(2, sizeof(int));//申请2个整形空间,并初始化为0
    *returnSize = 2;
    int oddSum = 0;//记录1到numsSize的和
    int curSum = 0;//记录当前数组的和
    int i = 0;
    for(i = 0;i < numsSize; i++)
    {
        if(arr[nums[i]] == 1)//nums[i]这个数字在arr数组的对应位置已经置过1了,则重复
        {
            ret[0] = nums[i];
        }
        arr[nums[i]] = 1;//将标记数组的对应数据位置1
        oddSum += i+1;//1到numsSize的求和
        curSum += nums[i];//当前数组中的数据求和(多了一个重复的,少了一个丢失的)
    }
    ret[1] = oddSum + ret[0] - curSum;//原始总和加上重复的数字再减去当前总和就得到消失的数字
    free(arr);
    return ret;
}

5e0470106c6e49158da52cbdc3e04a57.png


calloc函数的相关信息如下:

79eea2d77abf4474b4b464ac8540d01a.png


👉在排序数组中查找元素的第一个和最后一个位置👈


给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。



你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。



示例 1:


输入:nums = [5,7,7,8,8,10], target = 8

输出:[3,4]



示例 2:


输入:nums = [5,7,7,8,8,10], target = 6

输出:[-1,-1]



提示:


0 <= nums.length <= 105

-10^9 <= nums[i] <= 10^9

nums 是一个非递减数组

-10^9 <= target <= 10^9



思路:先定义一个找target左边界的函数,然后利用这个函数找target + 1的左边界,target + 1的左边界减去1就相当于target的右边界。定义first为target的左边界,当frist == numsSize或者nums[frist] != target时,就说明数组中没有target。

3397d85f590242069a56187b9c14a9fb.png

36391c04edda4715a05754ce178ef2fb.png

//寻找target的左边界,该函数也可以寻找target的右边界
int binarySearch(int* nums,int numsSize,int target)
{
    int left=0;
    int right=numsSize-1;
    while(left<=right)
    {
        int mid=left+(right-left)/2;
        if(nums[mid]<target)
        {
            left=mid+1;
        }
        else if(nums[mid]>=target)
        {
            right=mid-1;
        }
    }
    return left;
}
int* searchRange(int* nums, int numsSize, int target, int* returnSize)
{
    int first=binarySearch(nums,numsSize,target);//target的左边界
    int last=binarySearch(nums,numsSize,target+1);//target+1的左边界
    int* result=(int*)malloc(sizeof(int)*2);
    *returnSize=2;
    //当first==numsSize时,说明target大于数组的最后一个元素
    //当nums[first]!=target,说明数组中没有target
    if(first==numsSize||nums[first]!=target)
    {
        result[0]=-1;
        result[1]=-1;
        return result;
    }
    else
    {
        result[0]=first;
        result[1]=last-1;//last-1为target1的右边界
        return result;
    }
}

ca18a9243c3c4676b87bf8a6732ebdcc.png


注意:当first == numsSize或者nums[frist] != target时,target在数组中出现了0次。如果不符合以上情况,那么数组中就含有target,last - first就是target在数组中出现的次数。


👉排序矩阵查找👈


定M×N矩阵,每一行、每一列都按升序排列,请编写代码找出某元素。


示例:

现有矩阵 matrix 如下:

[

[1, 4, 7, 11, 15],

[2, 5, 8, 12, 19],

[3, 6, 9, 16, 22],

[10, 13, 14, 17, 24],

[18, 21, 23, 26, 30].

]


给定 target = 5,返回true。


给定 target = 20,返回 false。


思路:这道题目最容易想到的解法应该就是遍历整个二维数组,如果数组中出现了target,就返回true;否则,返回false。但是这种解法并没有利用到杨氏矩阵的特点:每一行、每一列的数字都按升序排列,时间复杂度为O(row * col)。还有另一种更加高效的解法,先定义两个变量row和col,row初始化为0,col初始化为matrixColSize。再定义一个变量num= matrix[row][col],如果num大于target,那么num下面的数字都大于target,所以col减减;如果num小于target,那么num左边的数字都小于target,所以row加加。如果num等于target,就返回true。如果循环结束了,说明数组中没有target,返回false。这种解法一次查找能够排查一行或者一列的数字,时间复杂度为O(row + col)。


注意:因为num初始化为右上角的数字,所以num只能向左方和下方移动。也就是说row只能加加,不能减减;col只能减减,不能加加。不过num也可以初始化为左下角的数字,那么移动方向就相反了。

3e2fbb725f8b44bfa81232b31358bfd3.png

bool searchMatrix(int** matrix, int matrixSize, int matrixColSize, int target)
{
    int row = 0;
    int col = matrixColSize - 1;
    while((row < matrixSize) && (col >= 0))//防止数组越界
    {
        int num = matrix[row][col];//num初始化为右上角的数字
        if(num > target)//如果num大于target,那么num下面的数字都大于target,所以col减减
        {
            col--;
        }
        else if(num < target)//如果num小于target,那么num左边的数字都小于target,所以row加加
        {
            row++;
        }
        else
        {
            return true;
        }
    }
    //循环结束,说明数组中没有target,返回
    return false;
}

80295353f9384409b4584de9a6971ddd.png


👉寻找数组的中心下标👈


给你一个整数数组 nums ,请计算数组的 中心下标 。



数组中心下标是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。



如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。



示例 1:


输入:nums = [1, 7, 3, 6, 5, 6]

输出:3

解释: 中心下标是 3 。 左侧数之和 sum = nums[0] +nums[1] + nums[2] = 1 + 7 + 3 = 11 , 右侧数之和 sum = nums[4] + nums[5] = 5+ 6 = 11 ,二者相等。


示例 2:


输入:nums = [1, 2, 3]

输出:-1

解释: 数组中不存在满足此条件的中心下标。



示例 3:


输入:nums = [2, 1, -1]

输出:0

解释: 中心下标是 0 。 左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),

右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。



提示:


1 <= nums.length <= 10^4

-1000 <= nums[i] <= 1000


思路:先遍历一次数组,求出数组的和sum。再遍历一次数组求出数组左边的和sum1与右边的和sum2,比较sum1和sum2是否相等。若相等,就返回下标i;若for循环结束,表明没有中心下标,返回 -1。

375255d04fd7433480e9459e05056010.png

int pivotIndex(int* nums, int numsSize)
{
   int sum=0;
   int i=0;
   for(i=0;i<numsSize;i++)
   {
       sum+=nums[i];
   }
   int sum1=0;//左边的和
   int sum2=0;//右边的和
   for(i=0;i<numsSize;i++)
   {
       //nums[i]为中间的数,左和和右和同时加上不影响结果
       sum1+=nums[i];
       sum2=sum-sum1+nums[i];
       if(sum1==sum2)
       {
           return i;
       }
   }
   return -1;
}

9faed188f8b040748746fc932e332a4c.png


👉两个数组的交集👈


给定两个数组 nums1 和 nums2 ,返回它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。

示例 1:


输入:nums1 = [1,2,2,1], nums2 = [2,2]

输出:[2]



示例 2:


输入:nums1 = [4,9,5], nums2 = [9,4,9,8,4]

输出:[9,4]

解释:[4,9] 也是可通过的



提示:


1 <= nums1.length, nums2.length <= 1000

0 <= nums1[i], nums2[i] <= 1000


思路:先对两个数组进行快速排序,然后定义两个变量index1和index2。当nums1[index1] == nums2[index2]时,需要判断返回的数组是否为空。如果为空,nums1[index1]直接放入返回的数组中;如果不为空,就需要判断数组前一个元素是否等于nums1[index1],如果不等于就将nums1[index1]放入返回的数组中。如果nums1[index1]和nums2[index2]不相等,且nums[index1]小,则index1++;反之,index2++。


int cmp(const void* a, const void* b)
{
    return *(int*)a - *(int*)b;
}
int* intersection(int* nums1, int nums1Size, int* nums2, int nums2Size, int* returnSize)
{
    //先排序
    qsort(nums1,nums1Size,sizeof(int),cmp);
    qsort(nums2,nums2Size,sizeof(int),cmp);
    //返回数组的最大长度是nums1Size或者nums2Size
    int max = nums1Size > nums2Size ? nums1Size : nums2Size;
    int* ret = (int*)malloc(sizeof(int)*max);
    //后利用双指针寻找交集
    int index1 = 0;
    int index2 = 0;
    *returnSize = 0;
    while((index1 < nums1Size) && (index2 < nums2Size))
    {
        int num1 = nums1[index1];
        int num2 = nums2[index2];
        if(num1 == num2)
        {
            // !(*returnSize)对应result数组中没有元素
            // result[(*returnSize) - 1] != num1用于去重
            if(!(*returnSize) || (ret[(*returnSize) - 1] != num1))
            {
                ret[(*returnSize)++] = num1;
            }
            index1++;
            index2++;
        }
        else if(num1 > num2)
        {
            index2++;
        }
        else
        {
            index1++;
        }
    }
    return ret;
}

c56b9abe41d3457e9cdf18e15bb7d6dd.png


👉总结👈


本篇博客讲解了几道数组的题目,其中涉及到二分查找算法、在杨氏矩阵查找一个数字和双指针的思想,希望大家能够理解掌握。如果大家觉得有收获的话,可以点个三连支持一下!谢谢大家啦!💖💝❣️

相关文章
|
2月前
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
38 1
|
2月前
【LeetCode 27】347.前k个高频元素
【LeetCode 27】347.前k个高频元素
40 0
|
2月前
|
索引
Leetcode第三十三题(搜索旋转排序数组)
这篇文章介绍了解决LeetCode第33题“搜索旋转排序数组”的方法,该问题要求在旋转过的升序数组中找到给定目标值的索引,如果存在则返回索引,否则返回-1,文章提供了一个时间复杂度为O(logn)的二分搜索算法实现。
25 0
Leetcode第三十三题(搜索旋转排序数组)
|
2月前
|
算法 C++
Leetcode第53题(最大子数组和)
这篇文章介绍了LeetCode第53题“最大子数组和”的动态规划解法,提供了详细的状态转移方程和C++代码实现,并讨论了其他算法如贪心、分治、改进动态规划和分块累计法。
71 0
|
2月前
|
C++
【LeetCode 12】349.两个数组的交集
【LeetCode 12】349.两个数组的交集
22 0
|
2月前
【LeetCode 06】203.移除链表元素
【LeetCode 06】203.移除链表元素
33 0
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
63 6
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
128 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
46 1